
SSTIC Challenge 2015

Erwan Hamon
@r1hamon

May, 2015

1 Introduction

This is my solution to the SSTIC Challenge 2015: http://communaute.sstic.org/

ChallengeSSTIC2015. If you want to have a try at the challenge and just need a little
help you can refer to the “Clues” part of the beginning of each stage.
I suggest you Git your code as you develop your tools for solving the challenge. And com-
mit as often as possible. This will help you find bugs you introduce as you get tired and
drunk in the process. All the code I developed (quick and dirty of course!) will be avail-
able after the SSTIC at https://github.com/r1git. I will not include the original git
folders that I used when solving the challenge. The commits comments are too offensive.

I also included a “Tracks of despair” section for each stage. That’s where I tell about
how not to found the solution.

I apologize for my English, I thought that a lot of solutions would already be avail-
able in French.

2 Stage 1

After uncompressing the challenge.zip file, we find the file sdcard.img.

2.1 Clues

$ file sdcard.img

sdcard.img: x86 boot sector, mkdosfs boot message display, code offset 0x3c, OEM-ID "mkfs.fat",

sectors/cluster 4, root entries 512, Media descriptor 0xf8, sectors/FAT 244, heads 64,

sectors 250000 (volumes > 32 MB) , serial number 0xe50d883b, unlabeled, FAT (16 bit)

$ strings sdcard.img | tail -n1

java -jar encoder.jar -i /tmp/duckyscript.txt

Google search: “encoder.jar /tmp/duckyscript.txt” returns information about ”USB
Rubber Ducky”
$ mkdir mnt

$ sudo mount -o loop sdcard.img mnt/

$ ls mnt/

inject.bin

1

http://communaute.sstic.org/ChallengeSSTIC2015
http://communaute.sstic.org/ChallengeSSTIC2015
https://github.com/r1git

More search on Google gives the link to a java encoder source file: https://github.

com/midnitesnake/USB-Rubber-Ducky/blob/master/Encoder/src/Encoder.java.
Using a forensic tool (The Sleuth Kit for example) on the image shows a deleted file. It
just contains the command java -jar encoder.jar -i /tmp/duckyscript.txt already found
by strings. No new clue here.

2.2 Solution

As the clues show, we are dealing with a USB Rubber Ducky which is a USB key that
acts as a keyboard. You plug it on a target computer and it starts emitting the key
strokes programmed in its firmware. The inject.bin is such a firware that is likely to
have been produced by the Encoder.java found on github. Analysing the Encoder.java
code, I developed a minimal decoder (decoder.py).
$ python decode.py > decoded

We see in the decoded file that the Rubber Ducky is programmed to send a Windows+R
(which is a shortcut for executing a command on windows), then lauch cmd.exe and
then send many (3390) powershell commands. Each of those powershell command is
encoded in base64 thanks to the -enc (equivalent to -EncodedCommand) of powershell.
Those powershell commands are meant to decode 3389 base64 strings inside a stage2.zip
file. Each time verifying that the user excuting those commands is “challenge2015sstic”
which is not relevant for us.

The last powershell command check the SHA1 checksum of the file giving us the op-
portunity to ensure that we will also decode it properly.

The task is therefore to:
1. parse each powershell command of the decoded file and decode the base64 scripts.
2. Decode the base64 included in each decoded script of step 1 and concatenate it to
stage2.zip file

Both those steps are achieved by the unpowershell.py script.
$ python unpowershell.py > stage2.zip

$ sha1sum stage2.zip

ea9b8a6f5b527e72652019313c25b56ad27c7ec6 stage2.zip

The SHA1 checksum matches the one found in the last powershell command.

2.3 Tracks of despair

There was no real difficulty in that stage. The hardest part was actually to find the
Encoder.java file with the clue “duckyscript”.

2

https://github.com/midnitesnake/USB-Rubber-Ducky/blob/master/Encoder/src/Encoder.java
https://github.com/midnitesnake/USB-Rubber-Ducky/blob/master/Encoder/src/Encoder.java

3 Stage 2

We are dealing with 3 files inside the stage2.zip.

3.1 Clues

The obvious memo.txt is self explanatory.
If you don’t remember what a pk3 file is, Google it :).
$ file sstic.pk3

sstic.pk3: Zip archive data, at least v2.0 to extract

$ unzip sstic.pk3

$ nautilus textures/sstic

$ strings maps/sstic.bsp | grep key

"message" "Yes!\n You found my key !"

3.2 Solution

We are now dealing with an encrypted file. The memo.txt gives us everything needed
to decrypt it, the algorithm, the IV and even the checksum of the decoded file so that
we can ensure proper decryption. It is just missing the decryption key... It seems the
emitter has hidden its key in a map of the Quake 3 FPS game. Is that plausible ? No.
Do we care ? Nope... It’s fun.
When looking in the textures/sstic direcory of the map, we see a series of picture having
hexadecimal colored parts on it as well as little symbols. There is too many of them so
that a bruteforce seems unlikely. We need more information.

There are two possible ways to go here:
1. Installing the game and playing the map
2. Reversing the map

Let’s try the first one. After installing Quake3 (you can find it easily on the net),
getting the pak0.pak3 file (you can find it easily in your garage) installing the map, it’s
time to play. Of course you load the map with the \devmap sstic so that you can cheat
during the game. Bring the Quake3 console and type the good old \noclip so that you
can walk through walls. Wandering in the map, I quickly found 6 pictures containing
hexadecimal colored value with a little black symbol. Some of the ones that we found
in the textures/sstic directory of the pk3 file. At the same time, the noclip cheat code
gives us direct access to a secret room where we see 8 black symbols associated with
colors on a wall. Also, walking to that wall triggers the message “Yes! You found my
key!”.

3

It is not very hard to conclude that those are the symbols and colors of the hexadec-
imal pictures found before in the map. But I only found 6 out of 8. Anyway, we have
enough information about the key and we can bruteforce the last two based on all the
pictures found in the textures/sstic directory.
The dec.py script does that job, quickly finds the key and gives us the stage3.zip file.

3.3 Tracks of despair

I sadly have to admit that I again felt in a typical bug for this challenge: forgetting to
remove the padding of the data after decryption. This of course gives a bad checksum
and the bruteforce script tries the correct key without concluding to a solution. The
good thing is that it forced me to try harder and therefore I tried to analyze the bsp
file deeper. With the GtkRadiant map editor you can convert the bsp file to a map file
and open it in the editor. In the editor and with static analysis of the bsp file, I found
that the secret room is reachable by pressing buttons, rushing to a secret corridor in less
than 30s, do a nice old-style rocket jump and land in the secret room to see the symbolic
key... It’s almost too bad that the \noclip trick gives you all of that for free. Yet, even
with the editor I was not able to find the 2 missing parts of the key. The bruteforce was
therefore still necessary.

4

4 Stage 3

In this stage we have 3 files and again we need to find a key hidden in one of them in
order to decrypt another one.

4.1 Clues

The obvious memo.txt. Watch out for the name and mode of the cypher:
Cipher: Serpent-1-CBC-With-CTS

$ file paint.cap

paint.cap: tcpdump capture file (little-endian) - version 2.4, capture length 262144)

$ wireshark paint.cap

Google search on mode CBS-With-CTS: http://en.wikipedia.org/wiki/Ciphertext_
stealing#CBC_decryption_steps

4.2 Solution

We now need to find a key hidden in the paint.cap file. The clues tell us that it is a
capture of the usb communication from a wheel mouse. My first guess was that it was
captured while the user was drawing the secret key manually inside paint. And it turned
out that I spoiled myself because that is exactly what it is.

5

http://en.wikipedia.org/wiki/Ciphertext_stealing#CBC_decryption_steps
http://en.wikipedia.org/wiki/Ciphertext_stealing#CBC_decryption_steps

So we need to understand the usb mouse protocol and replay it to draw back the
movement and clicks of the mouse. Not very difficult, but definitely fun. It appears
that everything is encoded in the last 4 bytes of every “3.1” to “host” packets that you
can read in wireshark. And you can find the description of the protocol at that url:
http://www.usbmadesimple.co.uk/ums_5.htm. I developed the mouse.py script that
parses the paint.cap, looks for the pattern corresponding to the mouse output, extracts
the last 4 bytes and deduces the mouse movements and mouse clicks. If the mouse is
clicked, it uses the Python Imaging Library to draw a line.

The output is then:

The key is therefore the hash of the string “The quick brown fox jumps over the lob-
ster dog”. The hash is Blake256. A C implementation can be found here: https:

//github.com/veorq/BLAKE/blob/master/blake256.c

Now we have almost everything we need. We only need an implementation of Serpent-1
with the mode CBC-with-CTS enabled. I went for python-cryptoplus: https://github.
com/doegox/python-cryptoplus.git The good thing is, it’s in python. The bad thing
is...it’s in python. Not only is it slow but also the implementation of Serpent-1 is the one
for educational purpose, easy to read but even slower. This would have been a no-go if
brute force was needed. Fortunately it is not. The other bad thing is that library does
not implement CBC-with-CTS mode. Yet it implements CBC and the wikipedia link
found in the clues explains how to do CTS from a CBC mode. Almost too good to be
true.

You can find the patch file for src/CryptoPlus/Cipher/blockcipher.py in the Annexe
transforming the CBC in CBC-with-CTS. Then you:

6

http://www.usbmadesimple.co.uk/ums_5.htm
https://github.com/veorq/BLAKE/blob/master/blake256.c
https://github.com/veorq/BLAKE/blob/master/blake256.c
https://github.com/doegox/python-cryptoplus.git
https://github.com/doegox/python-cryptoplus.git

export PYTHONPATH=/home/yourpath/python-cryptoplus/src

python dec.py.

6 minutes later on my laptop (!!!!! I told you...) the scripts decrypted the data.

4.3 Tracks of despair

I didn’t loose track on this one. It was fun to make a program draw the paint image, it
was very interesting to learn about CTS mode and it was very fun to (horribly) patch a
library to make it do what I wanted.

5 Stage 4

This stage only consists of one file: stage4.html

5.1 Clues

* { font-family: Lucida Grande,Lucida Sans Unicode,

Lucida Sans,Geneva,Verdana,sans-serif; text-align:center; }

The Geneva fonts seems to have been developped for Apple Computers and is difficult
to find on any other OS (http://en.wikipedia.org/wiki/Geneva_%28typeface%29)
Opening the stage4.html file in Firefox with Firebug and looking at the watch window of
the javascript debugger gives a lot of variables with readable strings (notably: AES-CBC,
the user agent of the browser, string manipulation functions...)

5.2 Solution

Here we are dealing with an obfuscated javascript script. When working on the clues, I
realize the Firebug extension of Firefox did a good job de-obfuscating part of the script:
if you go in the “Script/Function 1” menu of Firebug, you get the script on one line with
all readable characters.

7

http://en.wikipedia.org/wiki/Geneva_%28typeface%29

Javascript Beautifier (http://jsbeautifier.org/) helps cleaning that one-line code
(file firebug.js) and now we need to basically do variables substitution to get something
we could analyze. That exactly what the deob.py script does. The first part of the
main() function initialize some variable names and the loop then substitutes and sim-
plifies until there is no substitution left.
We now see a reference to chrome://browser/content/preferences/preferences.

xul which is the link used by Firefox to access its preferences. The script is very
clear now, it decrypts the data field with AES-CBC, initializing the IV with the 16
first characters inside the brackets of the user-agent and setting the key to the 16 last
characters inside the brackets of the user-agent. We have clues indicating that Firefox
under an Apple system is used. And we have the Firefox User Agent string refer-
ence for Mac https://developer.mozilla.org/en-US/docs/Web/HTTP/Gecko_user_

agent_string_reference.

The script brute.py bruteforces the different user-agent (remember we are just interested
by what is inside the brackets) until the good one is found and the data is decrypted.

5.3 Tracks of despair

Everything went fine on this stage until the bruteforce of the user-agent. I actually didn’t
found the official Mozilla user-agent reference until the very end. Therefore I was basing
all my bruteforce on online database of user-agents (like http://www.useragentstring.
com/pages/Firefox/). I used wget to get a lot of data from those sites and try different

8

http://jsbeautifier.org/
chrome://browser/content/preferences/preferences.xul
chrome://browser/content/preferences/preferences.xul
https://developer.mozilla.org/en-US/docs/Web/HTTP/Gecko_user_agent_string_reference
https://developer.mozilla.org/en-US/docs/Web/HTTP/Gecko_user_agent_string_reference
http://www.useragentstring.com/pages/Firefox/
http://www.useragentstring.com/pages/Firefox/

combinations through a script. I always included a country inside the bracket of the
user-agent when actually there is none in the solution. But almost all user-agents in the
databases included a country or a language. Life is unfair.

6 Stage 5

We unzip a schematic.pdf and an inject.bin file.

6.1 Clues

We see references to ST20 architecture and transputers in schematic.pdf.
A Google search brings us to a site with a lot of documentation on transputers and es-
pecially the Instruction Set Reference: http://www.transputer.net/iset/iset.asp
$ strings input.bin | grep tar

congratulations.tar.bz2

6.2 Solution

This stage was the hardest and of course the most interesting in my opinion. We had
to deal with transputers. Transputers are basically processors working in parallel and
exchanging synchronized messages via some sort of serial links. One processor can com-
municate with up to 4 other processors. The schematic.pdf gives us the architecture for
this stage:

9

http://www.transputer.net/iset/iset.asp

We see the input.bin file that we unzipped on the left. It is sent to Transputer 0 which
is then responsible for transmitting the code and data to Transputer 1, 2 and 3. Them-
selves responsible for feeding the rest of the transputers. Notice that transputers 11
and 12 are connected together. Typical communiction between 2 transputers consists
of two consecutive messages: the first one being the length of the next message to be
received. Another fun fact about transputers: it mainly uses 3 registers (plus one for
larger operands) for calculation and uses reverse polish calculus like the one we used on
our old Texas Instrument calculator. Those 3 registers act like a First In Last Out stack,
you can therefore push up to 3 values. The fourth push would dump the bottom of the
stack and you would loose your first push. For example, Push 10, Push 5, Push 1 , Add,
would result in the stack containing 6 (5+1) and 10 from the top.

10

First task is to disassemble the input.bin code thanks to the reference document found
during the clues gathering phase. The script extract.py extracts all transputers codes
and save it to individual files. The rev.py script is responsible for disassembling as well
as following the values of the 3 stack registers (and the operand register) and output it
when there is a store in memory. We could call that concolic execution but that would
be very insulting to people working on that subject. It needs two files (pop.txt and
sec2.txt) which are the primary opcodes and secondary opcodes found and copy-pasted
from the documentation. Here is an example of the output of the script when launched
with the proper arguments (offset, rebase...):

From left to right: [Adress][Opcode][Operation][Opcode 0x0f (argument)][meaning]
STACK[x] is the xth slot of local data of a process.

Now I’ll go straight on describing what the reverse engineering of input.bin gives (I’ll
use Tx for Transputer x). Transputer 0 receives the first byte of input.bin. It interprets

11

it as the length of the next message, receives it and runs it. It prepares its stack and
memory for the process to run, then send “Boot Ok“ to the listener on link 0 (the same
serial link where it received the code). Then it forwards the next messages received on
link0 (the next data available in input.bin) to T1, T2 and T3. T1, T2 and T3 runs
the code received and get prepared to similarly forward the next messages to T4-T12.
T4-T12 receive their code as well and runs it.
When T0 has finished spreading all those codes to the transputers it sends “Code Ok” to
link0. T0 then waits to receive “KEY:“ followed by 12 bytes of a key that are initialized
in input.bin as 12 times 0xFF. Then it sends “Decrypt“ to link0 and waits to read the
encrypted data 1 byte at a time.
Each time T0 receives a byte of encrypted data, it sends the 12 bytes of its local key
to T1, T2 and T3, XOR the results and uses it do decrypt the received byte. Then it
modifies the nth byte (modulo 12) of its local key before sending the result on link0.
First intersting thing to notice, during the 12 first steps, the calculus of T1-
T12 are not involved. Only T0 is doing a simple calculus between the encrypted
bytes and the key. For each encrypted bytes, T1-T3 are forwarding the key sent by T0
to their respective transputers and XOR the answers before sending them back to T0.
T0 is the only transputer to receive the encrypted bytes. T1-T12 don’t.

T4-T12 are the only transputer’s code to use the ”fcall” or “call” operand (depend-
ing on the documentation). It does exactly what you would expect in assembly: it calls
a subroutine until ret is reached to come back just after the calling instruction. Argu-
ments are to be placed on the local stack (value you access with ldl – load local). But
here, a little trick is played on us: one argument is useless and the subroutines have
access to farther elements of the stack actually accessing the local stack of the caller
routine. . . Just a simple obfuscating technique specific to the transputer design.

The reverse of all Transputer’s function has been implemented in trans.py. T0 is the
main() function, and T1-T12 are the F1-F12 function. Just run the script to launch the
test vector given in schematic.pdf.

We now need to discover the 12 bytes key. We also have the clue that the file we
will get at the end of the decryption is a .tar.bz2 fil and it turns out the first bytes of a
bz2 file are well defined (http://en.wikipedia.org/wiki/Bzip2):
.magic:16 = ’BZ’ signature/magic number

.version:8 = ’h’ for Bzip2 (’H’uffman coding), ’0’ for Bzip1 (deprecated)

.hundred_k_blocksize:8 = ’1’..’9’ block-size 100 kB-900 kB (uncompressed)

.compressed_magic:48 = 0x314159265359 (BCD (pi))

.crc:32 = checksum for this block

So we might expect for the 12 first decrypted bytes: “Bzh[1-9]1AY&SY??” We don’t
know which block-size ([1-9]), but the better compression is obtained with 9 and it’s the
default. We’ll start with that but we must include the rest in our bruteforce. The 2 last
bytes must be bruteforced, we can not anticipate that part of the crc32.

12

http://en.wikipedia.org/wiki/Bzip2

Remember how the 12 first bytes are directly derived from the 12 first bytes of the
encrypted data and the key? For those bytes, here is what apply (main() function of
trans.py):
decryptedbyte = (encryptedbyte xor (n + 2*key[n])) & 0xff
Where n is the position of the encrypted byte.

For the first 12 bytes, we know the encrypted data (tailing data in input.bin), we also
know some of the decrypted data (bzip2 header), we should solve the equation above
to find the key bytes. But beware, for every (decrypted, encrypted, n) tuple, there is 2
and sometimes 3 solutions for key[n] that are solutions of the equation because of the
“&0xff“. For example, 0x41 = 0x41 & 0xff but also 0x41 = 0x141 & 0xff and 0x41 =
0x241 & 0xff. (n+2*key[n]) can not reach the 0x300 value with key[n] ≤ 0xff and even
rarely reach the 0x200 value. We will therefore at first only bruteforce the 2 first cases.

So the bruteforce script dec.py has to try 65536 (2 crc bytes) * 9 (block size) * 4096
(2 solutions for each byte of the key) = 2 415 919 104. Ok. . . that’s within reach of a
computer but I reversed the transputer code in python. . . Python is slow. Using pypy
(http://pypy.org/) gets it about 10 times faster. But still it’s getting too long. Now
there are multiple way to improve that:
- optimize the logic of the transputer (Hard. Keep it in mind if completely stuck).
- optimize the code of the transputer (Possible but don’t expect big improvement).
- port the code to a faster langage (Possible but don’t expect big improvement)
- find another weakness in the way the decryption is done (Medium. That’s the spirit of
the challenge though. . .)
- optimize the brute-force logic (certainly possible, bzip2 format must not have given
everything it could).

I decided to try the two last options at first and see if more will be needed. The
problem is we have to decrypt the whole the file, then SHA256 the result to compare
it to the expected checksum. That’s too many operations. One way of improvement
would be to only decrypt the beginning of the file and check if it looks like a valid
bzip2 file. Looking at what could be anticipated in the rest of the bzip2, we see that
the bit following the crc is deprecated and always at 0, then there is the 3 first bits of
a pointer which is likely to be at 0 as well. And actually looking at many bzip2 file,
those 4 bits are always at 0. This would filter out some beginning of decryption and im-
prove the brute force by a theoretical factor of 24 = 16. Not so bad but not good enough.

Looking at how the key is mixed in T0, we should not expect a strong avalanche ef-
fect from this algorithm. Therefore, I decided to make statistics during the bruteforce
(which is never very far from the good key) of the 36 first decrypted bytes. It appeared
that the 32nd byte was often decrypted as a 0xff. Again deciding that this byte MUST
be 0xff filters out a lot of decryption candidates improving the bruteforce by a factor of

13

http://pypy.org/

28 = 256.
Those conditions added to the bruteforce, the script ends with the solution in less than
an hour on my laptop with no more optimizaton.

So to make it short. I had to bet that:
- no key byte will have the property n + 2key[n] ≥ 0x200
- there is 4 null bits in the decrypted text at the 0xe position
- there is the 0xff byte in the decrypted text at the 0x20 position
Those 3 bets were very likely to be true. And they actually were true, preventing me
from having to dig somewhere else.

6.3 Tracks of despair

When you reverse a code you cannot execute and develop it in another langage, you
have many holes to step your foot in. You can: misinterpret the langage, misinterpret
the logic of the code, create a bug in the logic of the code you produce, create a direct
bug in the code you produce... Having the python code properly work with the test
vector (thank you so much for that... this stage would have been so hard without it) was
not so easy. Even though the logic of the transputers is not that complicated. I had to
develop test cases and sometimes develop in another langage to ensure I properly mimic
the code of the transputers. I’m not even sure that developping a full emulator of the
transputers would have helped.
I also lost a couple of hours because of a very simple bug due to the fact that devolping
late at night is not good for your mind: in python, you need to specifically ”clone“ an
array (using a slice for example) to have 2 different arrays, otherwise you just get a
reference to the same array and modifying one modifies the other. I already told myself
a while ago that I should not forget this. This time I won’t. For sure.

7 Stage 6

We uncompress the congratulations.jpg picture!

14

But no obvious email adress. The author of the challenge is also teasing us with a ”one
little last step? “ at the bottom.

7.1 Clues

$ strings congratulations.jpg | grep BZh

Bzh91AY&SY

7.2 Solution

Now we can recognize a bzip2 header easily! The bz.py extracts data from there to the
end. We don’t need to care about the extra data because I learnt in the previous steps
that bzip2 manage its own blocks size and will trash the rest.

7.3 Tracks of despair

That was the easiest stage! Just a little joke to end the challenge I guess...

15

8 Stage 7

We uncompress yet another picture (congratulations.png). The joke is not over:

The teasing line now says: ”two little last steps ? ”.

8.1 Clues

$ strings congratulations.png | grep sTic | wc -l

28

The PNG format and its “chunks”: http://en.wikipedia.org/wiki/Portable_Network_
Graphics#.22Chunks.22_within_the_file

The compression methods in PNG files: http://www.w3.org/TR/PNG/#10Compression
Opening the file with hachoir (http://forensicswiki.org/wiki/Hachoir):

16

http://en.wikipedia.org/wiki/Portable_Network_Graphics#.22Chunks.22_within_the_file
http://en.wikipedia.org/wiki/Portable_Network_Graphics#.22Chunks.22_within_the_file
http://www.w3.org/TR/PNG/#10Compression
http://forensicswiki.org/wiki/Hachoir

8.2 Solution

The clues show us 28 chunk tagged with non standard tag “sTic” and which contained
data.
The script extract.py extracts all the data in the chunk and uncompress it using the
python zlib library with a window buffer of 32 as specified for the PNG format.

8.3 Tracks of despair

My first guess was that the chunks were not ordered and that I needed to try some
combinations to obtain the final file. I was even milseaded by the fact that sending a
file command on the isolated chunks data gave false positive.

17

But the high entropy of the data inside the chunks quickly pushed me back on the right
track.

9 Stage 8

You guessed it... another picture. congratulations.tiff:

“...three little last steps ? “

9.1 Clues

The Tiff format: http://en.wikipedia.org/wiki/Tagged_Image_File_Format
$hexedit congratulations.tiff

18

http://en.wikipedia.org/wiki/Tagged_Image_File_Format

9.2 Solution

In the hexedit view, we are supposed to view the raw 3 color bytes of each pixel. The
picture looks like it is surrounded with black pixels (00 00 00), but it’s actually only
very close to black (00 01 00 for example). So it seems that some information is hidden
in the Least Significant Bits of the image’s pixels. Watching how those LSB are altered
in the file, we notice that only 2 of the 3 RGB bytes are actually modified to store a bit
of information. The last one is not modifed (would have it been alterered randomly, the
challenge would have been a ”bit“ harder).
The script grab.py extracts the relevant bits of the picture.

9.3 Tracks of despair

I spent some time decoding all 3 bytes of the color encoding. Taking them in order (on
the x axis, line by line), as well as in reverse or along the y axis before checking if all
bytes were relevant. I also got diverted by the fact the height and width of the image
are multiple of 6... Don’t ask.

10 Stage 9

Here is the expected gif file:

19

”...four little last steps ? ”

10.1 Clues

Hachoir view of the color map element of the gif:

20

10.2 Solution

We observe that this gif file has a color map that allows to map a color encoding with
a color for the rendering. In this color map, Hachoir nicely shows us that many colors
have been mapped to black. One or many of those mappings to black are certainly used
to hide information on the image.
We don’t know which ones are used to hide information. The script col.py replaces all
black mappings in the color map with a random color.

The result is:

Hurray !

10.3 Tracks of despair

Thanks to Hachoir, this stage was straight forward.

21

11 Conclusion

I believe a good challenge is about learning stuff, getting stuck sometimes, having fun
and making you think about it in your shower.
Those goals were achieved in my case and I enjoyed it.
It was not exceedingly difficult and therefore we’ll certainly hear that it was easy. That’s
definitely a very relative statement. Anyway, thinking back about it, it felt like the kind
of marathon you are always proud to finish whatever time it took you.

Many thanks to the author(s).

Merci Vanessa pour tes encouragements et ta patience...

22

Annexe

Stage 1

decode.py

import sys

import struct

f = open("../inject.bin", "rb")

def p(sttr, el=True):

sys.stdout.write(sttr)

if el:

sys.stdout.write("\n")

def bytetochar(h, s):

v = struct.unpack(’B’,h)[0]

if (v+0x5d>=97 and v+0x5d<=122):

v = v+0x5d

if s:

v -= 0x20

res = chr(v)

elif (v+0x13>=49 and v+0x13<=57):

res = chr(v+0x13)

elif v == 0x2c:

res = ’ ’

elif v == 0x2d:

res = ’_’

elif v == 0x2e:

res = ’+’

elif v == 0x27:

res = ’0’

else:

res = ’’

return res

def decode():

byte = f.read(1)

while byte != "":

if byte == ’\x00’:

#p("\nDELAY "+str(int(f.read(1).encode("hex"),16)))

f.read(1)

elif byte == ’\x29’:

p("\nCTRL ESC")

elif byte == ’\x48’:

p("\nPAUSE")

elif byte == ’\x28’:

p("\nENTER")

byte = f.read(1)

if(byte!=’\x00’):

p("Enter not followed by 0")

else:

s = f.read(1)

shift = False

if(s == ’\x02’):

shift = True

elif(s != ’\x00’):

p("???",False)

b = bytetochar(byte, shift)

23

if b==’’:

p("UNDECODED "+byte.encode("hex")+"("+byte+")")

else:

p(b, False)

byte = f.read(1)

decode()

Stage 2

dec.py

from Crypto.Cipher import AES

from Crypto.Hash import SHA256

import sys

unpad = lambda s : s[0:-ord(s[-1])]

encoded = open("../encrypted", "r").read()

ha = SHA256.new()

ha.update(encoded)

check = ha.digest().encode("hex")

if(check != "91d0a6f55cce427132fc638b6beecf105c2cb0c817a4b7846ddb04e3132ea945"):

print "BAD INPUT"

sys.exit()

IV = ’5353544943323031352d537461676532’.decode(’hex’)

key = ["9e2f31f7", "8153296b", "3d9b0ba6", "", "b0daf152", "b54cdc34", "ffe0d355", ""]

p1 = ["7695dc7c", "f61a3560", "36c2e6fc", "3c66fa3b", "8154c63a",

"8ca39515", "e8c67d28", "7c16f3e9", "a5cb854f", "fbfac1eb"]

p2 = ["eda879c3", "26609fac", "c2e15ca0", "93fa1122", "db12fe60",

"42404ba0", "c70a5383", "9dfc72db", "43210a41", "5a689be0"]

i1 = -1

i2 = 0

while True:

i1 += 1

if i1 == len(p1):

i1 = 0

i2 += 1

if i2 == len(p2):

print "Tested all"

break

key[3] = p1[i1]

key[7] = p2[i2]

obj = AES.new("".join(key).decode(’hex’), AES.MODE_OFB, IV)

decoded = unpad(obj.decrypt(encoded))

hashed = SHA256.new()

hashed.update(decoded)

res = hashed.digest().encode("hex")

if(res == "845f8b000f70597cf55720350454f6f3af3420d8d038bb14ce74d6f4ac5b9187"):

print "Found correct key:", "".join(key)

f = open("decrypted", "w")

f.write(decoded)

f.close()

break

24

else:

print "Failed ",i1,i2,"".join(key)

Stage 3

mouse.py

import sys

import struct

from PIL import Image, ImageDraw

mse = open("../paint.cap").read()

inf = "\xc0\x8d\xe7\xf6"+"\x00"*4+"\x43"

i=-1

startx = 0

starty = 0

im = Image.new(’RGBA’, (1024, 1024), (0, 255, 0, 0))

draw = ImageDraw.Draw(im)

while(True):

i = mse.find(inf, i+1)

if i == -1:

break

mv = mse[i+0x40:i+0x44]

#sys.stdout.write(mv)

if(mv[0]==’\x01’):

but = True

elif mv[0]==’\x00’:

but = False

else:

print "mouse != 1 !!!"

but = False

mvx = struct.unpack(’b’,mv[1])[0]

mvy = struct.unpack(’b’,mv[2])[0]

if mv[3]!=’\x00’:

print "wheel !!!"

if but:

draw.line(((startx,starty), (startx+mvx,starty+mvy)), fill=128)

startx += mvx

starty += mvy

im.show()

git diff blockcipher.py

diff --git a/src/CryptoPlus/Cipher/blockcipher.py b/src/CryptoPlus/Cipher/blockcipher.py

index 78d2669..3cd952d 100644

--- a/src/CryptoPlus/Cipher/blockcipher.py

+++ b/src/CryptoPlus/Cipher/blockcipher.py

@@ -298,23 +298,20 @@ class CBC:

self.cache += data

if len(self.cache) < self.blocksize:

return ’’

- needed = len(self.cache)%self.blocksize

+ needed = self.blocksize - (len(self.cache)%self.blocksize)

myend = (len(self.cache)/self.blocksize * self.blocksize) - self.blocksize

25

print "Size cache:", len(self.cache)

print "Needed:", needed

print "myend:", myend

- for i in xrange(0, myend+1, self.blocksize):

- plaintext = util.xorstring(self.IV,self.codebook.decrypt(self.cache[i:i + self.blocksize]))

- if(i<myend):

- self.IV = self.cache[i:i + self.blocksize]

- decrypted_blocks+=plaintext

- self.cache = self.cache + plaintext[-needed:]

+ decr = self.codebook.decrypt(self.cache[myend:myend+self.blocksize])

+ self.cache = self.cache + decr[-needed:]

self.cache = self.cache[:myend] + self.cache[myend+self.blocksize:] + self.cache[myend:myend+self.blocksize]

- for i in xrange(myend, myend+self.blocksize+1, self.blocksize):

- print "i:", i

+ print "Cache padded:", len(self.cache)

+ for i in xrange(0, myend+self.blocksize+1, self.blocksize):

plaintext = util.xorstring(self.IV,self.codebook.decrypt(self.cache[i:i + self.blocksize]))

self.IV = self.cache[i:i + self.blocksize]

decrypted_blocks+=plaintext

+ print "Last i:",i

self.cache = self.cache[i+self.blocksize:]

return decrypted_blocks

dec.py

from CryptoPlus.Cipher import python_Serpent

from Crypto.Hash import SHA256

import sys

import serpent

#key = Blake256("The quick brown fox jumps over the lobster dog")

key = "66c1ba5e8ca29a8ab6c105a9be9e75fe0ba07997a839ffeae9700b00b7269c8d"

unpad = lambda s : s[0:-ord(s[-1])]

encoded = open("../encrypted", "r").read()

ha = SHA256.new()

ha.update(encoded)

check = ha.digest().encode("hex")

if(check != "6b39ac2220e703a48b3de1e8365d9075297c0750e9e4302fc3492f98bdf3a0b0"):

print "BAD INPUT"

sys.exit()

IV = ’5353544943323031352d537461676533’.decode(’hex’)

print IV

obj = python_Serpent.new(key.decode(’hex’), python_Serpent.MODE_CBC, IV)

print "Trying"

decoded = obj.decrypt(encoded)[:-2]

print "Done"

hashed = SHA256.new()

hashed.update(decoded)

res = hashed.digest().encode("hex")

if(res == "7beabe40888fbbf3f8ff8f4ee826bb371c596dd0cebe0796d2dae9f9868dd2d2"):

print "Yesss !"

else:

print "Failed "

26

f = open("decrypted", "w")

f.write(decoded)

f.close()

Stage 4

deob.py

import re

import sys

def repl(myfind, myto, mystr):

fr = myfind.replace(’$’, ’\\$’)

reg = r"(?<![_\$])(" + fr + r")(?![_\$])"

pattern = re.compile(reg)

return re.sub(reg, myto, mystr)

def main():

f = open("firebug.js", "r").read()

f = repl(’_____’, ’FUN1’, f)

f = repl(’______’, ’localVar’, f)

f = repl(’________’, ’arg’, f)

f = repl(’_$__’, ’localVar2’, f)

f = repl(’_____________________’, ’FUN2’, f)

f = repl(’_______________________’, ’FUN3’, f)

f = repl(’___________________________’, ’FUN4’, f)

f = repl(’___________’, ’index’, f)

f = repl(’_’, ’localArray’, f)

f = repl(’$_’, ’localVar3’, f)

f = repl(’_$__’, ’localVar4’, f)

f = repl(’_$’, ’localVar5’, f)

f = repl(’_____$_’, ’localArray2’, f)

f = repl(’_$___’, ’FUN5’, f)

f = repl(’__$__’, ’FUN6’, f)

f = repl(’____$$’, ’FUN7’, f)

f = repl(’_$___’, ’FUN8’, f)

f = repl(’___$_’, ’FUN9’, f)

for i in range(0,40):

f2 = open("firebug.js", "r")

l = f2.readline()

while(l):

#print l

regex = r"[\t]*([_\$]*) = (.*);$"

pa = re.compile(regex)

res = re.match(pa, l)

if res:

#print res.group(1), res.group(2)

f = repl(res.group(1), res.group(2), f)

l = f2.readline()

f = f.replace(’\’ + \’’, ’’)

f2.close()

print f

main()

27

brute.py

import re

import sys

import itertools

import time

from Crypto.Hash import SHA

from Crypto.Cipher import AES

from os import listdir, rename

from os.path import isfile, join, basename

unpad = lambda s : s[0:-ord(s[-1])]

data = open("data").read()[:-1].decode("hex")

ch = "08c3be636f7dffd91971f65be4cec3c6d162cb1c"

ptfm = ["Macintosh;", "Macintosh; U;"]

arch = ["Intel", "PPC"]

cy = ["", " fr;", " en-US;", " en-UK;", " en-GB;"]

version = [""]

for i in range(0,11):

version += [" 10."+str(i)]

Find possible firefox versions in online web page

rv = []

mydata = open("ffver.html").read()

reg = r"href=\"([0-9\.]+)/"

pattern = re.compile(reg)

res = re.findall(pattern, mydata)

rv = sorted(set(res))

For each .0 version add the version without the .0

for el in rv:

if(el[-2:] == ".0"):

rv+=[el[:-2]]

all = [ptfm, arch, version, cy, rv]

total = len(ptfm)*len(arch)*len(version)*len(cy)*len(rv)

print "Trying a total of:", total

ct = 0

prog = 0

timer = 10000

stt = time.time()

for t in itertools.product(*all):

timer -= 1

if timer == 0:

dt = time.time() - stt

eta = (total / 10000) * dt

print "ETA:", eta, "s"

if ct == total/10:

prog+=1

print str(prog*10)+"% done"

ct = 0

ua = t[0]+" "+t[1]+" Mac OS X"+t[2]+";"+t[3]+" rv:"+t[4]

#print "<"+ua+">"

iv = ua[:16]

key = ua[-16:]

if(len(key)<16):

continue

28

obj = AES.new(key, AES.MODE_CBC, iv)

decoded = unpad(obj.decrypt(data))

hashed = SHA.new()

hashed.update(decoded)

res = hashed.digest().encode("hex")

if(res == ch):

print "User agent found !"

print ua

f = open("decrypted", "w")

f.write(decoded)

f.close()

sys.exit()

ct += 1

Stage 5

extract.py

import struct

data = open("../input.bin", "r").read()

i = 0xf8+1

n = 1

size = 1

while(size!=0):

F1 = data[i:i+0xc]

#fi = open("F"+str(n),"w")

#fi.write(F1)

#fi.close()

size = struct.unpack("<I", F1[0:4])[0]

dest = struct.unpack("<I", F1[4:8])[0]

print "T"+str(n)+":", "Index", hex(i), "Size", hex(size), "Dest", hex(dest)

i += 0xc

if size != 0:

D1 = data[i:i+size]

fi = open("T"+str(n),"w")

fi.write(D1)

fi.close()

i += size

n+=1

rev.py

import struct

import sys

A = ""

B = ""

C = ""

oreg = 0

def ps():

global A,B,C

print "A = ",A

print "B = ",B

print "C = ",C

def push(i):

29

global A,B,C

C=B

B=A

A=i

def fpop():

global A,B,C

res = A

A=B

B=C

return res

popf = open("pop.txt", "r")

pop = []

popi =[]

for i in range(0,16):

ops = popf.readline().rstrip().split(’ ’)

pop.append(ops[0])

for i in range(0,16):

ops = popf.readline().rstrip()

popi.append(ops)

popf = open("sec2.txt", "r")

sec = []

seci = []

for line in popf:

ops = line.rstrip().split(’ ’)

sec.append(ops[0])

if len(ops)>1:

seci.append(" ".join(ops[1:]))

else:

seci.append("")

if(len(sys.argv) >= 3):

start = int(sys.argv[2])

else:

start = 1

if(len(sys.argv) >= 4):

ad = int(sys.argv[3])

else:

ad = 0

data = open(sys.argv[1], "r").read()[start:]

prev = -1

for op in data:

m = struct.unpack("B", op)[0]

o = (m & 0xf0) >> 4

n = (m & 0x0f)

if o == 0xf:

ind = 0

if prev>=0x21 and prev<=0x29:

ind = prev-0x20

do = sec[n+ind*16]

doi = seci[n+ind*16]

else:

do = ""

doi = ""

print ’{0:5s} {1:5s} {2:5s} {3:10s} {4:5s} {5:24s} {6:16s}’.format(hex(ad), hex(m), pop[o], do, hex(n), popi[o], doi)

30

if(prev<0x21 or prev>0x29):

if(o==1):

push("&STACK["+str(n)+"]")

elif(o==2):

oreg |= n

oreg <<= 4

elif(o==4):

push(hex(n|oreg))

elif(o==6):

oreg |= ~n

oreg <<= 4

elif(o==7):

push("STACK["+str(n)+"]")

elif(o==8):

push("("+fpop()+" + "+hex(n|oreg)+")")

elif(o==0xd):

print("STACK["+str(n)+"] = "+fpop())

elif(o==0xf):

if(n==1):

if(A[0] == ’&’):

A = A[1:]

else:

A = "*("+A+")"

elif(n==2):

arr = fpop()

index = fpop()

push(arr+"["+index+"]")

elif(n==5):

push("("+fpop()+" + "+fpop()+")")

elif(n==8):

push("("+fpop()+" * "+fpop()+")")

elif(n==9):

print("if "+fpop()+" > "+fpop())

elif(n==0xa):

index = fpop()

arr = fpop()

push(index+"[4*"+arr+"]")

if(o!=2 and o!=6):

oreg = 0

else:

if(o==0xf):

oreg = 0

if(prev==0x23):

if(n==3):

push("("+fpop()+" ^ "+fpop()+")")

elif(n==0xb):

dest = fpop()

if(dest[0]==’&’):

dest = dest[1:]

val = fpop()

print(dest+" = "+val)

elif(prev==0x24):

if(n==0):

val1 = fpop()

val2 = fpop()

push("("+val2+" >> "+val1+")")

if(n==1):

val1 = fpop()

val2 = fpop()

push("("+val2+" << "+val1+")")

if(n==6):

push("("+fpop()+" & "+fpop()+")")

31

elif(prev==0x21):

if(n==0xf):

val1 = fpop()

val2 = fpop()

push("("+val2+" % "+val1+")")

elif(prev==0x25):

if(n==0xa):

C=B

B=A

elif(o==2):

oreg |= n

oreg <<= 4

#ps()

prev = m

ad += 1

trans.py

import sys

var4 = 0

def F4(key):

global var4

for e in key:

var4 = (var4 + e) & 0xff

return var4

var5 = 0

def F5(key):

global var5

for e in key:

var5 = (var5 ^ e) & 0xff

return var5

var6_3 = 0

var6_1 = 0

def F6(key):

global var6_3, var6_1

if var6_3 == 0:

for e in key:

var6_1 = (var6_1 + e) & 0xffff

var6_3 = 1

aux1 = (var6_1 << 1) & 0xffff

aux2 = (var6_1 & 0x4000) >> 0xe

aux3 = (var6_1 & 0x8000) >> 0xf

var6_1 = (aux1 ^ ((aux2 ^ aux3) & 0xffff)) & 0xffff

return (var6_1 & 0xff)

def F7(key):

res1 = 0

res2 = 0

for i in range(0,6):

res1 = (key[i]+res1) & 0xff

res2 = (key[i+6]+res2) & 0xff

return (res1 ^ res2) & 0xff

32

var8_5 = []

var8_5.append([0]*12)

var8_5.append([0]*12)

var8_5.append([0]*12)

var8_5.append([0]*12)

var8_4 = 0

def F8(key):

global var8_5, var8_4

var8_5[var8_4] = key

var8_4+=1

if var8_4 == 4:

var8_4 = 0

res = 0

for i2 in range(0,4):

acc = 0

for i0 in range(0,12):

acc = (acc + var8_5[i2][i0]) & 0xff

res = (res ^ acc) & 0xff

return res

def F9(key):

res = 0

for i in range(0,12):

res = ((key[i] << (0x7 & i)) ^ res) & 0xff

return res

var10_4 = []

var10_4.append([0]*12)

var10_4.append([0]*12)

var10_4.append([0]*12)

var10_4.append([0]*12)

var10_2 = 0

def F10(key):

global var10_4, var10_2

var10_4[var10_2] = key

var10_2+=1

if(var10_2==4):

var10_2=0

res = 0

for i in range(0,4):

res = (res + var10_4[i][0]) & 0xff

index = res & 0x3

chrn = ((res >> 4) % 0xc) & 0xff

return var10_4[index][chrn]

var12_3 = [0]*12

def F12(key, read):

global var12_3

tosend = (var12_3[1] ^ var12_3[5] ^ var12_3[9]) & 0xff

var12_3 = key

index = (read % 0xc) & 0xff

res2 = var12_3[index]

return tosend, res2

def F11(key):

tosend = (key[0] ^ key[3] ^ key[7]) & 0xff

33

read, res2 = F12(key, tosend)

index = (read % 0xc) & 0xff

res1 = key[index]

return res1, res2

def F1(key):

res1 = F4(key)

res2 = F5(key)

res3 = F6(key)

return res1 ^ res2 ^ res3

def F2(key):

res1 = F7(key)

res2 = F8(key)

res3 = F9(key)

return res1 ^ res2 ^ res3

def F3(key):

res1 = F10(key)

res2, res3 = F11(key)

#res3 = F12(key)

return res1 ^ res2 ^ res3

LKey = []

L4 = 0

def main(ch):

global LKey, L4

newkey = (F1(LKey) ^ F2(LKey) ^ F3(LKey)) & 0xff

res = (ch ^ (L4 + 2*LKey[L4])) & 0xff

LKey = LKey[:]

LKey[L4] = newkey

L4+=1

if(L4 == 0xc):

L4 = 0

return res

def initi():

global var4, var5, var6_3, var6_1, var8_5, var8_4, var10_4, var10_2, var12_3, L4

var4 = 0

var5 = 0

var6_3 = 0

var6_1 = 0

var8_5 = []

var8_5.append([0]*12)

var8_5.append([0]*12)

var8_5.append([0]*12)

var8_5.append([0]*12)

var8_4 = 0

var10_4 = []

var10_4.append([0]*12)

var10_4.append([0]*12)

var10_4.append([0]*12)

var10_4.append([0]*12)

var10_2 = 0

var12_3 = [0]*12

#LKey = []

L4 = 0

if __name__ == ’__main__’:

data = "1d87c4c4e0ee40383c59447f23798d9fefe74fb82480766e".decode("hex")

34

LKey = map(ord, ’*SSTIC-2015*’)

for e in data:

sys.stdout.write(chr(main(ord(e))))

print ""

dec.py

import trans

import time

import sys

import struct

import hashlib

data = open("../input.bin").read()[0x9ad:]

good = "a5790b4427bc13e4f4e9f524c684809ce96cd2f724e29d94dc999ec25e166a81"

hur = "9128135129d2be652809f5a1d337211affad91ed5827474bf9bd7e285ecef321"

ha = hashlib.sha256()

ha.update(data)

check = ha.digest().encode("hex")

if(check != good):

print "BAD INPUT"

sys.exit()

else:

print"Input Ok"

data = map(ord, data)

ctr = 0

timestart = time.time()

step = 500000

tried = 0

bs is the Block Size unknwon value of bzip2 header (probably ’9’ == 0x39)

for bs in range(0x39, 0x30, -1):

header = ("425a68"+str(hex(bs)[2:])+"314159265359").decode("hex")

crc1 and crc2 are the unknown 2 bytes of the crc32

for crc1 in xrange(0,256):

for crc2 in xrange(0,256):

#ti is the possible decrypted header tested

ti = header+chr(crc1)+chr(crc2)

sh nth bit at 1 will take the 2nd solution for n+2*key[n]

for sh in xrange(0, pow(2,12)):

skip = False

ctr+=1

if(ctr%step==0 or tried>50):

now = time.time()

print "bs:", hex(bs), "index:",crc1,crc2, "time for last ",step,":", now-timestart, "s", "Tried:", tried, "sh:",sh

tried = 0

timestart = time.time()

trans.LKey = [0]*12

for i in range(0,12):

The 2 possible solutions

if(sh & pow(2,i)):

thissh = 0x100

else:

thissh = 0

calc = ((ord(ti[i]) ^ data[i]) | thissh) - i

if calc%2 != 0:

35

#print "Skip modulo"

skip = True

break

if calc<0:

skip = True

break

trans.LKey[i] = calc / 2

if(trans.LKey[i]>255):

skip = True

break

if(skip):

continue

trans.initi()

decr = [trans.main(e) for e in data[0:0xf]]

Expecting the 4 null bits

if decr[0xe] & 0xf0 != 0:

continue

middle = [trans.main(e) for e in data[0xf:0x21]]

Expecting the 0xff value

if middle[17] != 255:

continue

#If we are here we are going to try the full decryption and SHA256. This is expensive.

tried += 1

end = [trans.main(e) for e in data[0x21:]]

decr = decr + middle + end

decr = "".join(map(chr, decr))

ha = hashlib.sha256()

ha.update(decr)

check = ha.digest().encode("hex")

if(check == hur):

print "We have a match !"

f = open("decrypted", "w")

f.write(decr)

f.close()

f = open("res", "w")

f.write(str(map(chr, trans.LKey))+" bs"+hex(bs))

f.close()

sys.exit()

else:

pass

print "CTR:", ctr

Stage 6

bz.py

f = open("../congratulations.jpg", "r").read()[0xd7d0:]

o = open("stage7.tar.bz2","w")

o.write(f)

o.close()

36

Stage 7

extract.py

import struct

import zlib

f = open("../congratulations.png","r").read()

res = ""

start = 0

ct = 0

while start!=-1:

start = f.find("sTic", start+1)

if(start != -1):

size = struct.unpack(">I", f[start-4:start])[0]

print "Found - Num:", ct, "Size:", size, "@", hex(start)

if size <= 4919:

res = res + f[start+4:start+size+4]

ct+=1

print "Total len:", len(res)

unco = zlib.decompress(res, 32)

f = open("stage8.tar.bz2", "w")

f.write(unco)

f.close()

Stage 8

grab.py

import sys

data = open("../congratulations.tiff").read()[0x80:]

data = map(ord, data)

byte = ""

res = ""

length = 474

width = 636

for y in xrange(0, length):

for x in xrange(0, width*3, 12):

byte = ""

for j in range(0,12):

Skip 1 byte every 3 bytes

if((j+1)% 3 !=0):

byte = byte + str(data[(x+y*width*3)+j] & 1)

res += chr(int(byte,2))

sys.stdout.write(res)

37

Stage 9

col.py

import random

import sys

data = open("../congratulations.gif", "r").read()

start = 0x10

end = 0x30a

while start != -1:

start = data.find("\x00\x00\x00", start+1, end)

if start != -1:

a = int(random.random()*255)

b = int(random.random()*255)

c = int(random.random()*255)

data = data[0:start]+chr(a)+chr(b)+chr(c)+data[start+3:]

sys.stdout.write(data)

38

	Introduction
	Stage 1
	Clues
	Solution
	Tracks of despair

	Stage 2
	Clues
	Solution
	Tracks of despair

	Stage 3
	Clues
	Solution
	Tracks of despair

	Stage 4
	Clues
	Solution
	Tracks of despair

	Stage 5
	Clues
	Solution
	Tracks of despair

	Stage 6
	Clues
	Solution
	Tracks of despair

	Stage 7
	Clues
	Solution
	Tracks of despair

	Stage 8
	Clues
	Solution
	Tracks of despair

	Stage 9
	Clues
	Solution
	Tracks of despair

	Conclusion

