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     Abstract. Product vendors sometimes develop their own cryptographic
     algorithms  to  either  protect  their  intellectual  property  or  ensure
     information  confidentiality  (data  or  communications).  Many  of  these
     algorithms have been proven to contain critical weaknesses which defeat
     their  purpose,  weaken  security  and  might  expose  customer  data  or
     systems.
     Most  research  on  home-made  algorithms  is  usually  done  through
     reverse-engineering of the hardware or software parts implementing these
     cryptographic primitives. This article tackles a different approach on an
     unknown and simple algorithm.
     
During  the  study  of  an  embedded  system  firmware,  the  author  was
     not allowed to tamper with the targeted product. With hardware-based
     attacks or research out of the equation, this article proposes a first-hand
     account  on  how  black-box  cryptanalysis  was  performed  on  a  custom
     algorithm  in  order  to  retrieve  a  40  MB  firmware  from  an  18  MB
     compressed and encrypted image.
     
The author discloses approaches, methods, ideas and tools developed
     throughout the part-time 6-weeks process, and discusses explored ideas
     and attacks which proved to be either successful or dead-ends.
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   1    Introduction




   1.1    Disclaimer

While initially describing the study of obscure systems, cryptanalysis  [9] (as
a discipline) has a strong mathematical connotation. This paper does not
tackle much of the mathematical challenges the cryptanalysis of modern
cryptography poses. It is rather a collection of considerations and techniques
used to attack an unknown encryption/scrambling algorithm (an index table
may be found at section 6.3).

   Therefore, in the context of this article, cryptanalysis shall be viewed as
the historical discipline of retrieving cleartexts, whatever the means and
however weak the algorithm is. Do not expect a revolutionary attack on a
complex cryptosystem, rather a glimpse of a thought process.

   The focus of this article is to provide a first-hand account on the effort
such a cryptanalysis requires, as well as dismiss claims that attacking
custom-made cryptography is infeasible or requires extraordinary resources.

   As such, while identifying details were left out, the algorithm principles
have been preserved.




   1.2    State of the art in black-box cryptanalysis

Nowadays, black-box cryptanalysis is usually performed on ciphertext with
prior knowledge of the algorithm. This is mainly due to the various
reverse-engineering opportunities of available products, hardware or software.
Well-known examples include: 

   
   	digital rights management (DVD, etc.);
                                                                  
                                                                  
   

   	access control systems (various NFC technologies);
   

   	Wi-Fi encryption (WEP, WPA+TKIP);
   

   	cellular communications (A5/1 and A5/2 stream ciphers).


   Many other examples exist where proprietary cryptography was studied
and successfully attacked  [7]. This also includes the recovery of firmware
images  [1].

   However, all of these examples involved access to the algorithm details
before an attack could be performed on ciphertexts.

   Historically, ciphertext-only attacks with no prior access to algorithm
details have been devised by rival governments when eavesdropping foreign
diplomatic communications. While access to algorithm details would still be
seeked through various intelligence means, it was not uncommon to attack
foreign cryptography on the basis of intercepted communications only. Unlike
the well-known case of the Enigma machine, cryptanalysis of the German
Lorenz cipher during World War II was made without access to the physical
machine  [8]. At approximately the same time, the Japanese Purple code
was also broken by the american National Security Agency without
needing access to the device itself. A second attempt to break the
Purple code with modern techniques was even made by the NSA more
recently  [5].

   Similarly, early paid television services have had their scrambling
mechanism attacked. Some of their scrambling algorithms have even been
cryptanalyzed without having access to a legitimate decoder or algorithm
details  [2] [3].

   This article is an account of a similar attempt on present-day secret
proprietary algorithm used for firmware encryption.




   1.3    Embedded systems security

Security research is common on current embedded products in order to find
and patch vulnerabilities. Such a work may or may not be the result of a
collaborative effort with the product vendor. As such, different amounts of
information are available to the researcher, who in turn tries to get access to
as many information as possible, possibly up to design documents and source
codes.
                                                                  
                                                                  

   In many cases, source code access is either not possible for multiple reasons
or simply not desirable. The researcher often turns to black box analysis to:


   
   	study  device  communications,  via  traffic  captures  and  protocol
   fuzzing;
   

   	study its internal mechanisms, via reverse-engineering of the device
   firmware.


   To protect those, sometimes vendors still consider the development and use
of secret, unproven, home-made scrambling systems or cryptography a worthy
investment. Beyond firmware encryption/intellectual property protection, it is
not uncommon to find this kind of algorithm in proprietary communication
protocols. The rising trend in « smart » devices (the « Internet of
Things ») brings its round of similar attempts at bogus security measures.
Performance considerations worsen the problem, as vendors try to
implement « optimized » algorithms to run decently on limited hardware
resources.




   1.4    Context

As part of security research on a particular embedded system, a team of
several people split the task between various efforts, one being focused on the
firmware itself.

   To obtain the firmware image, multiple paths may be considered. Here are
the main options: 

   
   	asking the vendor;
   

   	downloading an image file hoping it is not scrambled;
   

   	retrieving the firmware legitimately from the device;
   

   	exploiting a software vulnerability to extract or study the firmware
   from the device;
                                                                  
                                                                  
   

   	exploiting an hardware vulnerability to extract or study the firmware
   from the device.


   Unfortunately, none of those are available: 

   
   	no proprietary information is to be exchanged;
   

   	the device is lent for a short duration by the manufacturer;
   

   	the device cannot be tampered with;
   

   	the device should be returned in pristine and working condition.


   These restrictions rule out any kind of hardware manipulations, such as
extracting firmware data directly from the NAND flash chips. Yet this specific
manipulation was considered, but deemed too risky after seeing how the SoC,
flash chips and contact pads are protected under a heavily glued heatsink (see
figure 1). 
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Fig. 1:  The  target  system  PCB  with  a  prominent,  glued  heatsink.
Undocumented visible connectors provide no useful signals. 

                                                                  
                                                                  
   


   After assembling the unit back together, members of the team go on with
fuzzing it, while the author focuses on retrieving the firmware by other
means.

   For the sake of this article, the different product models can be grouped as
follows: 

   
   	M1, M2, M3, M5 and M6 form model group A;
   

   	M4, M7 and above form model group B.


   Models from the latter group have significant differences in the hardware
platform. The available unit is model M6, with later tests done on model M3,
whose differences are irrelevant to this paper.

   Firmware updates images are available for all models, with five revisions at
the time of the study (including a major revision). Downgrading the device to
an older revision is officially supported, and the original firmware revision is
also available for download. Images for group A are about 18 MB in size, while
those for group B are about 50 MB.

   It is then decided to have a look at these firmware upgrade files as they
stand a good chance of containing the full image.

   Unfortunately, these images do not load into reverse-engineering tools as
they seem to be encrypted.


   1.5    Specific constraints

Modern techniques often involve knowledge of the attacked algorithm and use
some of its properties to retrieve information about the plaintext. This
information is usually retrieved through reverse-engineering of the software or
hardware parts implementing the target algorithm. This approach is not
possible due to our constraints.

   This paper thus focuses on ideas, approaches, methods and tools
developed while attacking the encryption with no prior knowledge:


   
   	the algorithm is entirely unknown;
   

   	the target platform architecture is unknown;
                                                                  
                                                                  
   

   	the hardware configuration is unknown (including possible security
   modules);
   

   	the  software  platform  seems  to  include  open-source  libraries  (SSL
   libraries), as observed by using the product;
   

   	no remote code execution was achieved on the device yet, excluding
   dynamic analysis or firmware extraction;
   

   	no oracle is available to get feedback from the firmware update process.


   The product could very well run an embedded Linux distribution on a
general-purpose CPU as well as a bare-bone proprietary operating system on a
custom-designed system-on-chip.




   1.6    Initial problem and resources considerations

While the practical case on which this article is based ends up being a success,
readers shall keep in mind the following considerations: 

   
   	the ideas developed in this paper are probably not suitable for strong
   cryptographic  algorithms:  a  detail  feels  dangerously  off  from  the
   beginning, hinting at a weak algorithm;
   

   	even with a weak algorithm, there is no guarantee of succeeding in
   recovering a plaintext image;
   

   	no knowledgeable help could be obtained;
   

   	what is observable does not necessarily reflect the algorithm designer’s
   intent: a very complex proprietary algorithm may result in observed
   properties which were not initially expected.


A particular emphasis is made on the last consideration. 

To achieve decryption, the following resources were used: 

                                                                  
                                                                  
   
   	six weeks of part-time research amounting to probably 3 weeks of
   full-time work on the project;
   

   	a single man effort, with contributions from two colleagues;
   

   	a single desktop workstation for computations;
   

   	lots of sweet and caffeine in various forms.


   These weeks of effort had a noticeable effect on the author’s health and
sanity, with sleeping and eating disorders occurring over an extended period of
time.




   2    Exploring file formats

The first step in analyzing firmware updates is figuring out the file format:


   
   	Is it a binary file? Is it executed on the device?
   

   	Is it a filesystem? Is it well-known or custom-made?
   

   	Is it compressed? Is it encrypted?
   

   	Does it contain metadata? A digital signature? Parameters?


   Immediate actions are to quickly check whether obtaining a usable binary
file looks feasible. Two main steps help achieve that: 

   
   	entropy analysis of every firmware update available, for all models in
   case some differences showed up;
   

   	file format and header reconstruction, which helps postulate various
   hypotheses which would then be tested.


                                                                  
                                                                  



   2.1    Entropy

Entropy analysis  [10] is known to help discriminate various types of data
(text, binary code, images), as well as their possible status (plaintext,
encrypted, compressed). The compression algorithm may sometimes be
identified by this method  [4].

   Figure 2 shows the result on firmware updates from both product model
groups.


   

                                                                  
                                                                  

                                                                  
                                                                  

[image: PIC]

 
Fig. 2: Binwalk entropy analysis on the first 17 MB of the update file for
model M6 (group A, bottom) and M7 (group B, top).

                                                                  
                                                                  
   


   Group B models exhibit a very high and uniform entropy average (around
0.98), possibly indicating the use of strong cryptography or compression.
However, group A models exhibit a far lower average entropy (0.78) with clear
fluctuations. Two areas near the end of the file have a higher entropy,
possibly revealing the use of compression or encryption on some parts of
the firmware. Also, the beginning and the end of the file show more
fluctuations than the largest area between the 10% and 80% filelength
marks.

   These fluctuations could indicate that more diverse data types
are located at these locations, while a single type lies in the largest
chunk.

   Also, a 0.78 average entropy could be characteristic of executable code,
which may suggest that the firmware is not strongly encrypted.


   2.2    Header identification

Opening the firmware update in any hexadecimal editor reveals plaintext data,
suggesting the presence of a formatted header (see figure 3).
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Fig. 3: Header fields identified visually. Chunk sizes and hashes can be
seen overlayed in green and red (darkest colors).

                                                                  
                                                                  
   


   The relevant model part number is mentionned a few times, as well as a
copyright string, both in plaintext form. They might help the update
program determine whether the proper update is being flashed to the
device.

   Also, four 6-character field names have two occurrences each. Their first
occurrence is preceded by 8 bytes for each. Four of these bytes turn out to be
the size of the data section following their second occurrence.

   The first two data sections contain short plaintext data or are simply
empty. The last section is identified as a signature, sits at the end of the
firmware update and is sufficiently long to hold a MAC value, but not much
more. The bulk of the firmware is thus located in the third data storage
section, which begins immediately.


   2.3    Main data storage section

The main data section starts with 92 unknown bytes, yet they do
not vary across firmware revisions nor models. The following section
contains weird ASCII values, ending with a long string of 0x2D values.
This section is actually a build timestamp/release string obfuscated
with a ROT13 pass. The actual purpose of the ROT13 use is still
unknown.

   Right after this ROT13 section, 120 bytes of data look much different from
the next ones, which have far more null values that the rest of the header.
Among those 120 bytes, a sharp eye can identify the 32-byte SHA256
hash value of an empty string (e3b0c44298fc1c14 9afbf4c8996fb924
27ae41e4649b934c a495991b7852b855). The four bytes immediately
preceding the hash are NULL, which may reveal a new size field.

   As three SHA256 hashes fit in 120 bytes, with 24 bytes left, there is room
for a 32-bit size field and an additional 4-byte value. Indeed, the other
4-byte values fit the description of a size field: adding all three fields
gives precisely the size in bytes of the remainder of the main data
section.

   Therefore, these three data chunks seem to be stored in the main data
section of the firmware update file, with the last chunk being empty.
Notably, this chunk of data is not empty among models from group
B.

   Unfortunately, those SHA256 hashes do not match any subset of the stored
data.
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Fig. 4: Header fields as retrieved from the manual file analysis. Bold text
highlights variable contents between revisions and models.

                                                                  
                                                                  
   


   From this manual analysis, many parts of the firmware update header can
be reconstructed. Figure 4 shows the resulting documentation. A few fields
are identified by reverse-engineering the firmware update application, but the
software does not parse them further than the first 144 bytes (0x90), while
some can be identified further along. Parsing of those fields is probably done
on the device itself.

   Identified fields are then compared across product models and firmware
revisions, to help mark fields whose values are either static or changing. Some
fields have their value depend solely on the firmware revision, sharing it across
models. Some other fields have their value change completely between models,
even from the same group.


   2.4    Hypotheses and initial thoughts

A summary of firmware update c.01 for model M6 is shown in figure 5.
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Fig. 5:  Firmware  update  file  format  summary.  Firmware  image  is
expected to be found within chunk #2.

                                                                  
                                                                  
   


   Two interesting data chunks are identified: a very small one, and a large
one occupying the bulk of the firmware update file. The latter is likely to
contain the firmware image.

   Analysis with automated tools, such as binwalk, does not identify a known
compression algorithm or data type.

   Consequently, the recovery efforts then focus on firmware updates for
models from group A, as they do not seem strongly encrypted.

   At this point, a few hypotheses are formulated on the identified data
chunks: 

   
   	one  of  the  chunks  must  contain  executable  code,  as  well  as  other
   plaintext data we should obtain by using the device (GUI strings, web
   pages);
   

   	the chunks could be flashed « as-is », as there seems to be strong
   integrity mechanisms in place;
   

   	identified  SHA256  hashes  must  correspond  to  the  output  after
   properly  processing  data  chunks,  indicative  of  either  (or  both)
   compression or encryption;
   

   	downgrading  ability,  format  similarities  and  varying  header  values
   across firmware revisions must mean the update file is self-sufficient,
   and that the updater software is backward compatible.


   We were then left with two data chunks, of which we assumed to have the
SHA256 values of their corresponding plaintext. The recovery efforts then
focus on each chunk, as recovering the smallest one could eventually help
recovering the largest chunk.

   Up to this point, the recovery efforts lasted for a single day.


   3    Initial intuition, trial and errors




   3.1    Finding code patterns

                                                                  
                                                                  
Not knowing whether the binary data is in plaintext, compressed, or
somehow encrypted form, a colleague suggested to try and match code
patterns.


   Finding instruction opcodes

A statistical analysis can be performed on byte groups of varying length, to
match the results to those of typical CPU architecture instruction
sets.

   This task is quite difficult, especially with variable-length instruction
sets.

   Although it was briefly explored, initial results proved too uncertain to
properly match any given architecture.


   Function calls

Byte sequences related to function calls/returns or function prologue/epilogues
can be searched for, and matched against those of known architectures. A
match would also help identify the underlying CPU architecture. One would
find roughly the same proportion of call instructions than that of return
instructions. The same goes for prologue/epilogue patterns (matching
combinations of push/pop instructions).

   While data entropy is somewhat similar to that of binary code from various
architectures, this approach proved unsuccessful.




   3.2    One more hypothesis

After failed attempts at directly identifying executable code, a new hypothesis
is tested.

   The plaintext data is likely to be either some form of binary executable
code, some data files, or parameters. Such data is likely to be structured:
common executable formats have a well-defined header, whose structure and
values do not vary that much between compilations. The same is true for
other data types.

   Therefore, we are likely to find a format header or container structure
which probably does not vary much between firmware updates.
                                                                  
                                                                  




   3.3    Initial discovery

After the firmware update header, data from chunk #1 immediately shows a
lot of null values, as can be seen in figure 6: chunk #1 data starts at
0x1E0.

   Additionally, most bytes have a very low number of bits set. This seems to
confirm the previous hypothesis that data might be structured and have
bitfield values or flags stored first.
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Fig. 6:  Chunk  #1  binary  data  differences  between  consecutive  minor
revisions of model M6. Note how the same number of bits are set in each
4-byte word.

                                                                  
                                                                  
   


   Binary differences between two consecutive minor revisions reveal another
interesting detail: there is the same number of bits set for each corresponding
4-byte group.

   This observation leads to a major discovery: if the stored data is actually
structured, it is unlikely that the format markers differ by much. Bits should
then be stored at the same position. Since it is not the case, there are yet
precisely the same number of bits set for each 4-byte group, the content has
probably been scrambled at least by a bitwise rotation of some
sort.

   This is first verified manually by calculating bitwise rotations differences
on little-endian 4-byte words, as shown on figure 7.
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Fig. 7: Whiteboard with initial discovery of bit-shifting similarities across
firmware revisions.

                                                                  
                                                                  
   


   So the scrambling system is likely to use bitwise rotations to obfuscate
data from chunk #1, as we are able to get perfect matches of the first data
bytes by applying a specific rotation to an update revision compared to
another.

   Up to this point, two days of effort had been spent in the analysis.


   3.4    Comparing update revisions

The previous finding means that one might be able to match some if not all
data from an update revision to another, by simply applying the same bitwise
rotation to each 4-byte word.

   Comparing SHA256 hashes from the update headers between various
models and revisions reveals that chunk #1 data could be the same
within the same major firmware revision. Figure 8 shows that all minor
revisions of the b.xx and c.xx branches respectively have identical
hashes.
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Fig. 8: SHA256 hashes found in headers from update files for different
versions and models.

                                                                  
                                                                  
   


   Therefore, if our earlier hypothesis—that SHA256 hashes are those of
cleartext data—is true, it should be possible to perfectly match chunk #1
data found among those minor revisions, both in cleartext and encrypted
form.

   Ciphertext match does not necessarily mean the encryption has been
broken yet, as the bitwise rotation may be applied as a final pass. However, if
this is the only pass, it is then possible to fully decrypt the data. In any case,
being able to match ciphertext from an update to another can still prove
useful.

   Figure 9 shows what the decryption approach would be in such an
event.
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Fig. 9: Decryption approach for chunk #1 in the event bitwise rotation
is the only scrambling pass.

                                                                  
                                                                  
   


   Unfortunately, applying the same bitwise rotation to the full chunk #1
data only yields a partial match: data ceases to match after an arbitrary
length (see figure 10).
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Fig. 10: Block boundary detection in chunk #1 at 0x1F018 due to a
sudden content mismatch.

                                                                  
                                                                  
   


   The bitwise rotation distance changes after a given length, hence
revealing that the scrambling process works with 4-byte aligned blocks of
arbitrary sizes. Repeating the bitwise rotation allows identification of 4
blocks of different sizes with different rotation parameters for the full
chunk.

   Note that the first two blocks include large amounts of consecutive NULL
bytes. As these NULL bytes are insensitive to bitwise rotation, it is impossible
to determine how many blocks span across those.


   3.5    Bruteforce

Testing all 31 possible bitwise rotations on chunk #1 finally reveals some
plaintext, indicating that no other scrambling has been applied to data. The
first block reveals the ELF magic value, while the last block reveals ELF
section names and some compilation string artefacts.

   As shown in figure 11, two blocks are left with no identifiable plaintext in
any of their rotated counterpart. This leaves 312 = 961 combinations
(compared to the initial 314 = 923521 combinations), allowing a bruteforce
attack on chunk #1 to recover the plaintext. Candidate plaintexts would be
tested against the SHA256 hash found in the update header, granted our
initial hypothesis is correct.
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Fig. 11: Block decryption bruteforce for chunk #1.

                                                                  
                                                                  
   


   All 961 candidates are generated with their SHA256 hash, and a match is
found for chunk #1, validating all previously stated hypotheses.

   A valid ELF binary follows a small, custom header. This also reveals that
the underlying architecture is a MIPS CPU.


   3.6    Chunk #1 analysis

Reverse-engineering the recovered chunk #1 ELF reveals interesting details.
The binary has three main modes of operation: 

   
   	parsing headers with a format matching the one found before the ELF
   magic;
   

   	uncompressing a blob to an arbitrary memory location, with a variant
   of an LZ compression algorithm;
   

   	acting as an ELF image loader and jumping to its entry point.


   Oddly enough, it looks like this binary is executed on the device and gets
the decrypted chunk #2 as an input, decompresses and runs it. The binary
could act as a bootloader and be used to load the firmware image into
memory.

   The compression algorithm is then reimplemented to mimic the binary
implementation, including corner cases and error conditions. However, the
chunk #2 data needs to be fully decrypted before being able to fully
uncompress it.




   3.7    Trial and error

While bruteforce was an option for chunk #1 (even with the initial
923521 combinations), this seems a very unlikely possibility on chunk
#2 due to the potentially large number of blocks. A rough estimate
gives more than 2000 blocks with the observed mean block size of 8
KB.

   Chunk #2 also displays a valid ELF header at the beginning, after a
similar custom header. However, identifiable data quickly surfaces in the few
kilobytes immediately after the ELF header: 

                                                                  
                                                                  
   
   	large data areas padded with 0xFF values;
   

   	an embedded filesystem image, with structures similar to directory
   entries;
   

   	corrupted web content (HTML pages and GIF images).


   Binwalk successfully identifies a very limited number of images, though
they are split across multiple storage blocks of the filesystem and are not yet
fully recoverable.

   The chunk #2 data is still compressed at this point. Due to how LZ
compression works, early bytes will probably be left unaffected before the
compression dictionnary fills with enough context. However, control bytes are
inserted every 8 bytes, corrupting contents.

   Quickly enough, the compression mechanism is sufficiently active to deter
naive recovery attempts. Also, block boundaries for the encryption algorithm
become less and less clear as binary data is much more difficult to identify. It
is then required to recover all block boundaries as well as the rotation
distance for each of these blocks before being able to uncompress the
firmware.

   As could be expected, contrary to the chunk #1 data, no two firmware
updates share identical SHA256 hashes. Identifying block boundaries is not
feasible using the same comparison technique.

   About two weeks of part-time work had been spent on recovering the chunk
#1. The next sections will cover how the actual recovery was performed on the
18 MB chunk #2.




   4    Hypotheses, heuristics and validation

Two major parameters are still unknown: 

   
   	how the bitwise rotation distance is chosen;
   

   	how the block size is determined.


   Given the size of the chunk #2 data, these parameters cannot be guessed
by bruteforce alone.
                                                                  
                                                                  




   4.1    Refining hypotheses and using them to find strong heuristics

Given the previous findings regarding the chunk #1 executable, one can safely
assume compressed, cleartext chunk #2 data is processed by a similar (if not
identical) binary running on the device itself. The following hypotheses may
then be formulated: 

   
   	decryption must occur before any further processing;
   

   	downgrade support means the decryption binary must either apply a
   common algorithm for every revision or identify the target revision;
   

   	firmware update files must be self-sufficient to yield correct decryption
   parameters.


   Careful comparison between update revisions and across different models
reveals the following facts: 

   
   	rotation distance varies based on version number only, as the same
   values are used for chunk #1 data across different models;
   

   	block  sizes  vary  by  both  version  number  and  model;  however  as
   no  identical  SHA256  is  found  across  models,  the  latter  may  be
   unimportant;
   

   	block sizes do not vary between minor firmware revisions for the same
   chunk #1 data.


   Therefore, block sizes and rotation distances could be determined by:


   
   	two hard-coded, data- and version-dependent lists of values;
   

   	a value generation algorithm seeded by information within the update
   file header;
   

   	the cleartext data itself, or a value derived from the cleartext data
   (possibly its hash value).


                                                                  
                                                                  
   It is highly unlikely that hardcoded lists of values are used for each
version, as they should be either determined from the start of the product
lifecycle, or pushed in advance for upcoming upgrades by the previous ones.
This process seems very unlikely for a device with both downgrade support
and the ability to skip major revisions.

   The next efforts are focused on recovering how both block sizes and
rotation distances are determined. At that point, only a handful of these
values have been determined: 4 blocks for chunk #1 data, and only 2 blocks
for chunk #2 data.




   4.2    Expanding the sample size

To get a better idea of the various block sizes and rotation parameters, it is
useful to gather as much actual values as possible, sorted by revision number
and model.

   Fortunately, chunk #1 data for model M1 is 560 KB long. As multiple
versions share the same data, the same comparison technique can be used
between minor revisions to identify block boundaries.

   Within two minor revisions 22 and 24 blocks can be identified, with
confirmed lengths varying between 128 and 15712 bytes (blocks starting or
ending in byte arrays neutral to bitwise rotation are ignored as their boundary
cannot be precisely determined). No obvious correlation pattern can be
identified with such a small sample size.

   Rotation parameters to fully decrypt chunk #1 cannot not be bruteforced.
Indeed, only five blocks are recovered based on string values, leaving 17 to 19
unknown parameters, far too much to guess accurately. Again, the sample size
for both block size and rotation parameter is insufficient to detect any
noticeable correlation.

   As the comparison method cannot be reliably used on chunk #2 data
because of varying contents between revisions, other ways of confirming block
boundaries are developed.




   4.3    Instrumenting compression

The decompression algorithm will fail if it encounters certain particular invalid
control bytes or empty dictionary entries.
                                                                  
                                                                  

   This allows using the decompression algorithm to validate its own
input: incoherent data will not be decompressed correctly. This implies:


   
   	bitwise rotation on 4-byte words will corrupt or shift control bytes at
   incorrect positions;
   

   	decompression  dictionary  will  slowly  fill  with  incorrect  contextual
   data, leading to decompression errors later on, sometimes very far
   from the current position, depending on data duplicity.


   If wrong block sizes or rotation parameters are guessed, decompression is
likely to fail. This fact can be exploited to validate guessed values, by trying
to uncompress the data and having the decompression routine display offsets
where errors have been encountered.




   4.4    Finding multiple reliable checks

Block boundaries will end in the middle of stored data, which may be used as
a validity check: 

   
   	if an executable binary is located around suspected block boundaries,
   disassembling instructions should yield a coherent output, rather than
   corrupted or uncommon instructions;
   

   	if a filesystem is discovered, its structure could be reverse-engineered
   to help validate coherence of guessed block boundaries and rotation
   parameters;
   

   	if files of known format are discovered, they can be used to validate
   the decompression output.


   Various data are found that could be used to validate block boundaries
after guessing block size and bitwise rotation distance: 

   
   	a  data  structure  first  attributed  to  a  NAND  flash  image  format
   (however, this turned out to be misleading);
                                                                  
                                                                  
   

   	a proprietary filesystem derived from FAT-like structures;
   

   	a few web pages;
   

   	a few PNG and GIF images;
   

   	multiple X.509 certificates for HTTPS support.


   This « almost known » cleartext data helps provide reliable checks to
confirm candidate block boundaries and rotation parameters: either
check for consistency or simply compare with a copy obtained from the
embedded web server. GIF files, web pages and certificates are used in that
regard.




   4.5    Unreliable data

A block boundary ends up within an SSL certificate for a different model, which is still present
in the image1 .
Due to the random nature of such data, and unavailability of the relevant
model, it is impossible to fully validate this block boundary.

   Furthermore, the embedded filesystem image seems to contain forensic
artefacts of deleted data within the web root, which is confusing as
these files could not be retrieved by accessing the web server (as if
the filesystem image had been generated and updated on an actual
device).

   These uncertainties lead to the decompression progressing or failing in
similar ways given multiple different candidate block boundaries. This quickly
increased combinatorial complexity.

   This type of error becomes more and more common as the decompression
progresses through binary input data which is not easily identifiable/verifiable.
Indeed, the decompression dictionary quickly fills, leaving less and less empty
entries, which results in less and less decompression failures (even from
incorrect data).
                                                                  
                                                                  


   4.6    Combining steps to discard branches
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Fig. 12: Chunk #2 decryption approach.

                                                                  
                                                                  
   


   As described in figure 12, the recovery process outline then becomes as
follows:
   

   	guess rotation parameter for the first block, using the ELF magic
   value, or bruteforce the rotation distance ;
   

   	run  instrumented  decompression  on  candidate  cleartext  chunk.
   Decompression failure occurs at or after the actual block boundary:
   decompression   should   then   have   advanced   significantly   if   the
   parameters were guessed correctly;
   

   	check validation heuristics on candidate uncompressed chunk;
   

   	try  the  next  candidate  rotation  parameter  or  block  boundary  if
   validation fails. Go on to the next block if validation passed.


   Advancing decompression along with guessing attempts provides the
following benefits: 

   
   	bitwise  rotation  distance  is  bruteforced  for  each  subsequent  block
   sequentially   instead   of   trying   every   combination   for   multiple
   consecutive blocks. Doing so contained combinatorial explosion within
   acceptable limits;
   

   	compression  control  codes  may  be  checked  for  coherence  before
   attempting   decompression,   effectively   reducing   the   number   of
   combinations;
   

   	decompression  can  be  attempted  on  multiple  candidate  block
   boundaries, with candidates advancing the output further likely being
   the correct ones;
   

   	multiple, different heuristic checks may be tested against the last few
   uncompressed candidates.


   This approach limits computational requirements progressively by running
the most CPU-intensive tasks on less candidates as they are being discarded
along the way.
                                                                  
                                                                  


   4.7    Initial results

This approach yields very interesting results. As shown in figure 13, multiple
block boundaries and rotation parameters can be retrieved.

   It becomes evident that the rotation distance comes from a cyclic list of 24
values. This list is shared across all revisions and models. Only the starting
index differs and it is determined by the version number within the update file
header.

   This discovery enables full decryption of model M1 chunk #1, which
ends up having no helpful difference with respect to chunk #2 data
recovery.

   At this point however, block boundaries do not seem to be shared between
models or revisions, nor do they look cyclic.

   Uncertainties in block boundaries, as well as decompressed data ambiguity
lead to finding new ways of validating our guesses, as discussed in
subsection 4.9.
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Fig. 13:  Chunk  #2  identified  block  boundaries  and  repeating  bitwise
rotation pattern.

                                                                  
                                                                  
   


   4.8    Implementation

   

                                                                  
                                                                  

                                                                  
                                                                  

[image: PIC]

  
Fig. 14:  Developed  tool  for  block  boundary  and  bitwise  rotation
parameter discovery.

                                                                  
                                                                  
   


   A small tool is developed specifically to implement our approach
(figure 14): 

   
   	given  an  initial  rotation  distance,  it  will  guess  the  next  block
   boundaries   recursively   by   running   decompression   attempts   on
   multiple candidate boundaries;
   

   	decompression   is   reimplemented   in   C   (from   our   initial   ruby
   implementation), to accommodate for some performance issues;
   

   	rotation parameter guessing is reimplemented using the discovered
   hardcoded  values  to  speed  up  boundary  discovery  and  eliminate
   unreliable guesses.


   The tool is obviously very specific to the attacked algorithm and firmware
update format.


   4.9    Analyzing revision-specific differences

While different firmware revisions contain different data, one could assume
minor revisions would not differ by much.

   Even if parts of the executable code change to reflect patches, most static
resources and code will remain the same. This means one should be able to
find identical data within two consecutive minor revisions, granted the build
process is streamlined and produces a similar content layout for each
revision.

   Therefore, an attempt is made to recover two consecutive firmware
revisions in parallel. The rationale behind this effort is as follows: as different
versions have different block sizes, block boundaries are likely to end up in
different parts of their contents. This means that for any given data
block, one will probably be longer than the block containing the same
data from the other revision. It is then possible to leverage this length
difference to cross-validate block boundaries by comparing contents from
candidate blocks of one revision to the longer block from the other
revision.
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Fig. 15: Chunk #2 mutual validation approach.

                                                                  
                                                                  
   


   Proceeding this way enables cleartext recovery by alternating the
reference block used for validation between two consecutive firmware
revisions: whichever block ends at the farthest output offset will be used
as reference. This « mutual validation » approach is described in
figure 15.


   4.10    Final results

The mutual validation between consecutive revisions proves successful enough
to enable the recovery of several hundreds of data blocks.

   During the manual recovery of these block boundaries, some statistics are
kept. It becomes obvious that their sizes are also following a cyclic
pattern of 31 values (see figure 16), although they are different for every
firmware revision. Like block boundaries of the chunk #1, it is thought
that the values do not depend on revision numbers, but only data
contents.
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Fig. 16: Chunk #2 identified block boundaries across firmware update
revisions.

                                                                  
                                                                  
   


   Using both the block size and rotation distance lists to decrypt the
firmware results in a clear text image matching the SHA256 hash found in the
update file header.

   This concludes the six weeks of research, with most advances always
occurring only a few days apart. The lack of long period without significant
breakthroughs supported arguments in favor of continuing the cryptanalysis
effort.
                                                                  
                                                                  


   5    Instrumentation considerations




   5.1    Planned evolutions, areas of research

While further development was not required, a few evolutions and areas of
research were discussed internally, in case the manual and mutual validation
approach proved insufficient: 

   
   	automating the mutual validation process;
   

   	automating binary disassembly as a dedicated validation check;
   

   	spending more effort reverse-engineering the proprietary filesystem to
   develop efficient validation heuristics;
   

   	using a third data source for validation, across either three consecutive
   minor revisions or between identical revisions for different product
   models;
   

   	instrumenting  decompression  to  provide  dictionary  hit  and  miss
   statistics, and devise heuristics based on expected behaviour.





   5.2    On multithreading

The developed tools used for bruteforce or block boundary discovery are not
multithreaded.

   The author believes spending time on properly multithreading the process
would have shifted focus on irrelevant matters, rather than finding clever ways
of attacking the problem. To an extent, the author recommends performance
issues not be resolved by multithreading before any other option has been
fully explored.

   However, some critical steps may hit performance issues, as was the case
with our initial ruby implementation of the decompression algorithm. One
                                                                  
                                                                  
should take extra time to consider whether multithreading would lift a
significant bottleneck or help advance to an ulterior step.

   A basic attempt was still made to make use of the Open MP multithreading
library, although performance was not ultimately an issue for our needs.




   5.3    Statistical methods for data analysis

While simple analysis of block sizes and rotation parameters helped identify
cyclic patterns, a true statistical analysis was not relevant for our data
set.

   However, this method should always be considered, and the author
purposedly kept track of various observed properties in case a statistical study
would be required later on.




   6    Final thoughts and industry efforts




   6.1    Recovered algorithm and data

The efforts succeeded in recovering a plaintext firmware image from the
update files only. The result is a 42.2 MB ELF file recovered from the initial
18.1 MB firmware update. The file loads properly in IDA and finally reveals a
custom-designed, proprietary real-time operating system running on a MIPS
architecture.

   The encryption algorithm resulted in bitwise rotation performed on 4-byte
words, with parameters shared within data blocks of varying sizes ranging
from 128 bytes to 16 KB. Bitwise rotation distance is taken from a cyclic list
of 24 values, shared accross all firmware versions, with a starting value
depending solely on the firmware update version. Block sizes vary with 31
possible values, also taken from a cyclic list, whose values vary depending on
the firmware update chunk content.

   The reader should keep in mind the observed resulting algorithm may not
necessarily reflect the designer’s intent, but might as well be the result of
unintended consequences of an improper design.
                                                                  
                                                                  

   Reverse engineering of the discovered firmware revealed enormous, unrolled
routines implementing cryptographic primitives believed to participate in the
update process. Multiple debug symbol names reveal the algorithm was
actually thought as a cryptosystem, with decryption and encryption routines
being explicitly named as such.




   6.2    Required effort and resources

As stated in subsection 1.6, the effort spanned over six weeks of part-time
work for a single researcher.

   Coworker contributions included reverse-engineering of the ELF
binary contained in the first chunk as well as a reimplementation of the
decompression routine in both Ruby and C, in addition to various tool
optimizations.

   The developed tools helped us figuring out block boundaries, which
allowed recovery of plaintext images in less than half an hour of manual
checking. Computations were single-threaded and performed on a Dell T5500
workstation with 12 GB of RAM and dual Xeon X5650 (6 cores/12 threads
each, 2.67 GHz).

   In preparation for a similar attempt, the author would like to give readers
the following advices: 

   
   	take detailed notes of everything: wikis are great for that;
   

   	take regular breaks, sometimes for extended periods of time;
   

   	step back and go over your approach on a regular basis to avoid getting
   lost in your own misconceptions;
   

   	try to find ways to refine and/or validate hypothesis;
   

   	have your ideas cross-examined by coworkers who are not involved in
   your project, keep notes of every suggestion;
   

   	do not take a path without having considered at least one or two other
   possible options in case of failure.


                                                                  
                                                                  



   6.3    Summary of discussed techniques and ideas

The following tables provide a summary of analysis techniques and ideas
discussed in this article, along with their relevance to the recovery of our
firmware data.


   File format identification




 
	

	                  

	
                  


	

	                  

	
                  


	
Technique/Idea    
	Ref.	
Comments/Relevance                       


	

	                  

	
                  


	

	                  

	
                  


	

	                  
                                                                  
                                                                  

	
                  


	

	                  

	
                  


	
Entropy analysis      
	 2.1  	
Helped   identify   compressed   and   weakly
encrypted data                                       


	

	                  

	
                  


	

	                  

	
                  


	
Field         delimiter
identification           
	 2.2  	
Helped recover data-container structure       


	

	                  

	
                  


	

	                  

	
                  


	
Well-known     value
identification           
	 2.2  	
Helped  identify  hashes,  timestamps,  sizes,
etc.                                                      


	

	                  

	
                  


	

	                  

	
                  

                                                                  
                                                                  

	
Size-field
identification           
	 2.2  	
Helped delimit raw data chunks                 


	

	                  

	
                  


	

	                  

	
                  


	
Static/variable  data
identification           
	 2.3  	
Helped    delimit    fields,    identify    value
significance, devise hypotheses                   


	

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	                  

	                  

	
                  


	
                  


	                    	     	

                                                                  
                                                                  





   Encryption scheme identification




 
	

	                  

	
                  


	

	                  

	
                  


	
Technique/Idea    
	Ref.	
Comments/Relevance                       


	

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	

	                  
                                                                  
                                                                  

	
                  


	
Finding   instruction
opcodes                 
	 3.1  	
Unsuccessful attempt at finding executable
code                                                     


	

	                  

	
                  


	

	                  

	
                  


	
Matching      calling
conventions            
	 3.1  	
Unsuccessful  attempt  at  finding  code-like
patterns in case the encryption kept symbols
alike                                                     


	

	                  

	
                  


	

	                  

	
                  


	
Bitwise         binary
differences              
	 3.3  	
Helped locate bitfields, headers, parameters,
etc.                                                      


	

	                  

	
                  


	

	                  

	
                  

                                                                  
                                                                  

	
Comparing  multiple
samples                 
	 3.4  	
Helped
identify static data BLOBs, enable statistical
analysis, exploit potential similarities          


	

	                  

	
                  


	

	                  

	
                  


	
Bruteforce              
	 3.5  	
Helped        recover        data        without
known/identifiable plaintext                      


	

	                  

	
                  


	

	                  

	
                  


	
Reverse-engineering  
	 3.6  	
Helped       identify       and       implement
the compression algorithm, helped find useful
error/corner cases                                   


	

	                  

	
                  


	

	                  

	
                  


	
Binary             data
fingerprinting          
	 3.7  	
Unsuccessful attempt at recovering complete
files from firmware image                          


	
                                                                  
                                                                  

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	                  

	                  

	
                  


	
                  


	                    	     	






   Data recovery




 
	
                                                                  
                                                                  

	                  

	
                  


	

	                  

	
                  


	
Technique/Idea    
	Ref.	
Comments/Relevance                       


	

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	
Devising        strong
heuristics               
	 4.1  	
Helped develop data validation routines used
for automating exploration                       


	

	                  

	
                  


	

	                  

	
                  

                                                                  
                                                                  

	
Keeping     statistics
and numbers           
	 4.2  	
Helped   identify   patterns,   cyclic   values,
helped prepare further analysis                  


	

	                  

	
                  


	

	                  

	
                  


	
Chaining  decryption
with               other
processing              
	 4.3  	
Helped      validate      decryption,      block
boundaries, decompression input                


	

	                  

	
                  


	

	                  

	
                  


	
Instrumenting
compression            
	 4.3  	
Helped   discard   incoherent   compression
control bytes                                          


	

	                  

	
                  


	

	                  

	
                  


	
Validating        data
formats                  
	 4.4  	
Helped  validate  successful  decompression,
helped              discard              corrupted
bruteforced/guessed candidate blocks          


	
                                                                  
                                                                  

	                  

	
                  


	

	                  

	
                  


	
Chaining          data
validation               
	 4.6  	
Helped limit combinatorial complexity        


	

	                  

	
                  


	

	                  

	
                  


	
Cross-comparison
between      multiple
source data versions 
	 4.9  	
Helped   exploit   similarities   across   data
revisions, helped derive validation heuristics 


	

	                  

	
                  


	

	                  

	
                  


	
Multithreaded tools  
	 5.2  	
Unused                                                 


	

	                  

	
                  


	
                                                                  
                                                                  

	                  

	
                  


	
Statistical   methods
for data analysis      
	 5.3  	
Unused,  though  it  was  strongly  considered
and prepared for                                     


	

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	                  

	                  

	
                  


	
                  


	                    	     	






   Thought process

                                                                  
                                                                  



 
	

	                  

	
                  


	

	                  

	
                  


	
Technique/Idea    
	Ref.	
Comments/Relevance                       


	

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	

	                  

	
                  


	
Taking long breaks   
	 6.2  	
Proved essential to keeping clear thoughts,
ideas and goals                                       


	

	                  
                                                                  
                                                                  

	
                  


	

	                  

	
                  


	
Peer            review,
suggestions        and
rubber            duck
debugging              
	 6.2  	
Proved essential to validate and find ideas,
helped ensure the implemented methods were
appropriate and correct                            


	

	                  

	
                  


	

	                  

	
                  


	                  

	                  

	
                  


	
                  


	                    	     	









   6.4    On the use of home-made cryptography

Most researchers would not bother trying to attack the algorithm directly
when they could afford attacking the hardware directly.

   While it is widely recognized that security by obscurity is not a viable
option in the long term, the successful efforts presented herein are
                                                                  
                                                                  
a strong reminder that custom-made cryptography is not a strong
deterrent to reverse-engineering. Even worse, the development and
use of such algorithms tend to provide vendors with a false sense of
security, which ultimately is fatal in environments where security is
key.

   Hiding firmwares to deter reverse-engineering ultimately results in the
security community failing to analyze products and get vulnerabilities fixed
through responsible disclosure, while leaving resourceful, malicious actors able
to spend the required effort to succeed. These actors usually have no incentive
to publish their findings or get bugs fixed, leaving legitimate customers
vulnerable.

   All of these considerations hold even without considering the fact that
designing a secure cryptographic system can prove very difficult  [6].
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           1  The fact that generic SSL certificates are shared and hardcoded is a worrying fact on
     its own.
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upd-sha256.png
Model Version

M3
M3
M3
M3
M3
M3

M6
M6
M6
M6
M6

M6

a.01
b.00
b.01
b.02
c.00

c.01

a.01
b.00
b.01
b.02
c.00

c.01

chunk #1 SHA256
302e7a968837c8e947a0838072e090cd31decdf43d214ce49159eb8c4e696749
f8e7175e9468a32c93dd6fafd349ea2080b7a9eb5a355ac6688451139ccfba3
f8e7175e9468a32c93dd6fafd349ea2080b7a9eb5a355ac6688451139ccfb9a3
f8e7175e9468a32c93dd6fafd349ea2080b7a9eb5a355ac6688451139ccfba3
2240aal1061e36953375835aabc7df50c6c6c9d495d388b3068c4d4c190aaBae
2240aa11061e36953375835aabc7df50c6c6c9d495d388b3068c4d4c190aaBae
3caba9187f17d3d548ba59a6fe742eff2360b5329285056d6aec59d99e2e341f
2c084c2cad46b9df64a3ed9Ib8346147020ce98e6b33895d5c0eas8865d1b92075d
2c084c2cad6b9df64a3ed9b8346147020ce98e6b33895d5c0ea8865d1b92075d
2c084c2ca46b9df64a3ed9b8346747020ce98e6b33895d5c0ea8865d1b92075d
31d0569f058654ef501820b978e55b3b7ef33fece1964d5f f6d992d48c627cf6
31d0569f058654ef501820b978e55b3b7ef33fece1964d5ff6d992d48c627cf6

chunk #2 SHA256
7fa8e2f14f03dafblb490e5e9433ech403ae6c9d85afblde4el26c3b2cc19b3d
758605f64ac5c00bf821096515536ac6d2ee8a60fd883969fd277d3198abfb7
Oece3c7b50c8970f96026e0109de951fba570700a42a48ele4e45916de74263
7e812b3b993321b44c749e54d2c7ba25623b58c0921d6b095738che59ed13950
4d8afeba9d3fc325212743874d78ff41bfob0e5ce6lae3cbd4ch94dad354c726
edb2cdc7dcOc174aeb26729577fcd34b9c9060992ae0feb2bc0df95d8b178edb

f60c382ae3f88b7ddc8f39bd6240a2d17a47 fefIcad2cac8002ddeef7f2f32dd
3782f7fb4561b9522e59078857402976685883 fb2dbe89f84b2eab7e15258581
5dc6b540499e800d8ee2905c61486c82aed41cc3ceb7bccbbdecle5fab24cfcle
915b44a142fb73d7096274603f058cbf2087f48f257a2d9f6e752f009cf9009e
32c8e97273f7b555e3a8f71c149ef90e4304408942c fc03004df6d0b20 3306
a317ae03851805d9e8cbe723d154b804bcb8bd956ab6ca88a8848574733807 fa
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0x00000000

~0x00010000

~0x0001F000

0x0001FC20

0x00020750

Block #1
rol(2) = cleartext

2 blocks with unknown
bitwise rotation distance:
- 312 = 961 combinations
- possible bruteforce

Block #2 match with SHA256 from header

rol(???)

Block #3
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Block #4
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chunk2-tool-FULL.png
[-] Declared block #801: shift=21 start: 6x00000000

[+] FW UPD size: XXXXXXX (XXXXXXXX bytes)

[+] chunk 1 size: ©x00020750 (132944 bytes)

[+] Chunk 2 size: 0x01118636 (17925680 bytes)

[+] SHA256 Hash #1: 22402a11061e36953375835aabc7df50c6c6c9d495d388b3068cadac190aa8ae

[+] SHA256 Hash #2: 4d8afeba9d3fc325212743874d78fF41bfoboesce61ae3cbdach9ddadisacre

[+] SHA256 Hash #3: e3b0c44298fc1c149afbf4c8996Fb92427ae41e4649b934cad95991b7852b855

[+] Performed ROT13 on Build string

[-] Allocating and rotating 32 chunk2 buffers [....5....16....15....20....25....30..] done

[-] RAW Data:
20930 ©0 60 60 06 00 00 60 03 00 00 00 04 48 44 52 00 ............HDR
20940 ©0 60 60 06 00 00 60 08 80 80 00 00 62 7e 6f f8 .............~0
20950 ©0 60 60 08 01 06 60 fc 01 06 00 fa 62 7e 6f 4 .............~0
20960 ©1 00 7f 45 4C 46 00 61 01 01 00 00 00 00 00 80 ...ELF.........

[-1 explore(): Step 0: guard

(-1 explore(): Step 1: find crash offset..

[-1 explore(): Step 2-5: find next shift

[-1 explore(): Step 6: generate candidates

[-1 explore(): Step 7: run stage2 on candidate boundaries

[-1 explore(): Step 8: discard candidates below threshold

(-1 explore(): found candidates:

[+] |- 0x00001BA®  shift: 19  pos: 6x00005126  [depth: 1

[+] |- 0x00001B9C  shift: 19  pos: 6x00005126  [depth: 1

[+] |- 0x00001B94  shift: 19  pos: 6x00005126  [depth: 1

[+] |- 0x00001B90  shift: 19  pos: 6x00005126  [depth: 1

[-1 explore(): Step 9: recurse into valid candidates

[-1 explore(): Step 0: guard

[-1 explore(): Step 1: find crash offset... 0x00005126
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chunk2-bornes-3.png
Model M5

c.00 V c.01 [V c.00 V c.01 IV c.00 V c.01
block boundaries decimal block sizes (dec)

0x00000000 0x00000000 0 0|
0x00001BA0 0x00000080 7072 128 7072 128
0x00005120 0x000030A0 20768 124438 13696 12320
0x00006468 0x00004BCC 25704 19404 4936 6956
0x0000918C 0x00007974 37260 31092 11556 11688
0x0000C850 0x0000B858 51280 47192 14020 16100
0x0000F7A0  0x0000D04C 63392 53324 12112 6132
0x00010E60 0x0000D9A4 69216 55716 5824 2392
0x00013FAC 0x00010228 81836 66088 12620 10372
0x00014AE8  0x000114E0 84712 70880 2876 4792
0x00018784 0x00014A10 100228 84496 15516 13616
0x00018B50 0x00016D64 101200 93540 972 9044
0x000193F4 0x00018F94 103412 102292 2212 8752
0x0001B864 0x000191AC 112740 102828 9328 536]
0x0001BAC4  0x00019DC4 113348 105924 608 3096
(0x0001EAEC 0x0001C294 125676 115348 12328 9424
0x0001FA08  0x0001F100 129544 127232 3868 11884
0x00022EE0  0x00020FFC 143072 135164 13528 7932
0x00026A58 0x000231C4 158296 143812 15224 8648
0%00027610 0x00023400 161296 144384 3000 572
0x00028E94 0x00024420 167572 148512 6276 4128
0x0002B040 0x00027528 176192 161064 8620 12552
0x0002CA78  0x00029C34 182904 171060} 6712 9996
0%00030800 0x0002DAIC 198656 187036 15752 15976
0x00032FD4 0x0002FE8C 208852 196236 10196 9200
0x00033650 0x00030C98 210512 199832 1660 3596
0x00034AC0  0x00031964 215744 203108 5232 3276
0x00036C30 0x00035638 224304 218680 8560 15572
0x00036E54 0x00039214 224852 234004 548 15324
0x00039A6C 0x0003B9BO 236140 244144 11288 10140
0x0003B968  0x0003BBFC 244072 244732 7932 588
0x0003D508 0x0003E820 251144 256032 7072 11300
0x00040A88 0x0003E8AQ 264840 256160 13696 128
0%00041DDO  0%000418C0 | 269776 268480 4936 12320
0x00044AF4 0x000433EC 281332 275436 11556 6956
0x000481B8 0x00046194 295352 287124 14020 11688
0x0004B108 0x00042078 | 307464 303224 12112 16100
0x0004C7C8 0x0004B86C 313288 309356 5824 6132
0x0004F914 0x0004ClC4 325908 311748 12620 2392
0x00050450 0x0004EA48 | 328784 322120 2876 10372
0x000540EC  0x0004FD00 | 344300 326912 15516 4792
0x000544B8 0x00053230 345272 340528 972 13616
(0x000548E8 0x00055584 346344 349572 1072 9044
0x00054D5C  0x000577B4 | 347484 358324 1140 8752
0x000571CcC  0x000579cC | 356812 358860 9328 536
0x0005742C 0x000585E4 357420 361956 608 3096
0%0005A454 0x0005AAB4 | 369748 371380 12328 9424
0x0005B370 0x00050920 | 373616 383264 3868 11884
(0x0005E848 0x0005F81C 387144 391196 13528 7932
0x000623c0  0x000619E4 | 402368 399844 15224 8648
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Hypothesis:

- different versions have different
block sizes

- variations should be minimal between
minor revisions

Solution:

- match uncompressed cleartexts
between different minor revisions
- mutually validate boundaries





