

 Table of Contents

 1 Introduction

 2 A Flaw in the BCV

 3 Code Injection from a Bytecode Verified Applet

 4 Other Experimental Results

 5 Conclusion, Countermeasure and Future Works

Fuzzing and Overflows in Java Card Smart Cards

Julien Lancia and Guillaume Bouffard

1
 THALES Communications and Security S.A.S

Parc technologique du canal, Campus 2 – Bat.A

3 avenue de l’Europe, 31400 Toulouse, France

julien.lancia@thalesgroup.com
2
 Agence Nationale de la Sécurité des Systèmes d’Informations (ANSSI),

51, boulevard de La Tour-Maubourg, 75700 Paris 07 SP, France.

guillaume.bouffard@ssi.gouv.fr

 Abstract.
 The Byte Code Verifier (BCV) is one of the most important security
 element in the Java Card environment. Indeed, embedded applets must
 be verified prior installation to prevent ill-formed applet loading. At the
 CARDIS 2015 conference, we disclosed a flaw in the Oracle BCV which
 affects the applet linking process and can be exploited on real world
 Java Card smart cards. In this article, we present how this vulnerability
 had been found and our exploitation of this flaw on a Java Card
 implementation that enables injecting and executing arbitrary native
 malicious code in the communication buffer from a verified applet. This
 attack was evaluated on several Java Card implementations with black
 box approach. In this case, as we cannot evaluate the effect of the control
 flow redirection caused by the attack, we develop a generic function which
 can be executed from any point.

Key words: Java Card, Software Attack, BCV vulnerabilities

 1 Introduction

Developing smart card applications is a long and complex process. Despite
existing standardization efforts, e.g., concerning power supply, input and
output signals, smart card development used to rely on proprietary
Application Programming Interfaces (APIs) provided by each manufacturer.
The main drawback of this development approach is that the code of the
application can only be executed on a specific platform, thus lowering
interoperability.

 To improve the interoperability and the security of embedded softwares,
the Java Card technology was designed in 1997 to allow Java-based
applications for securely running on smart cards and similar footprint devices.
Due to the resources constraints of this device, only a subset of the Java
technology was retained in the Java Card technology. The trade-offs made on
the Java architecture to permit embedding the Java Card Virtual
Machine (JCVM) on low resource devices concern both functional and security
aspects.

 1.1 The Java Card Security Model

In the Java realm, some aspects of the software security relie on the Bytecode
Verifier (BCV). The BCV guarantees type correctness of the code, which in
turn guarantees the Java properties regarding memory access. For
example, it is impossible in Java to perform arithmetic operations on
references. Thus, it must be proved that the two elements on top of the
stack are bytes, shorts or integers before performing any arithmetic
operations. Because Java Card does not support dynamic class loading,
bytecode verification is performed at loading time, i.e. before installing the
Converted APplet (CAP) file onto the card. Moreover, most of Java Card
platforms do not embed an on-card BCV as it is expensive in terms of
memory consumption. Thus, bytecode verification is performed off-card,
either directly by the card issuer if he masters the loading chain, or
by a trusted third party that signs the application as a verification
proof.

 In addition to static off-card verification enforced by the BCV, the Java
Card Firewall performs runtime checks to guarantee applets isolation. The
Firewall partitions Java Card’s platform into separated protected object
spaces called contexts. Each package is associated to a context, thus
preventing instances of a package from accessing (reading or writing) data of
other packages, unless it explicitly exposes functionality through a Shareable

Interface Object.

 Despite all the security features enforced by the Java Card environment,
several attack paths [6, 17, 7, 16, 8, 28, 4, 3, 32, 21, 23, 20] have been
found exploitable by the Java Card security community.

 1.2 State-of-the-art on Java Card Bytecode Verifier flaws

The BCV is a key component of the Java Card platform’s security. A single
unchecked element in the CAP file, while apparently insignificant, can
introduce critical security flaws in smart cards as shown in [17].

 Although exhaustively testing a piece of software is a complex
problem, several attempts have been made to characterize the BCV of
the Java Standard Edition from a functional and security point of
view. In [34], the authors rely on automatic test cases generation
through code mutation and use a reference Virtual Machine (VM)
implementation including a BCV as oracle. In [11], a formal model of
the VM including the BCV is designed, then model-based testing is
used to generate test cases and to assess their conformance to the
model.

 In the Java Card community, several works aim at providing a reference
implementation of an off-card [25] or an on-card [14, 5] Java Card
BCV. These implementations are mainly designed from a formal model
and can be used to test the BCV implementation provided by Oracle.
As for the VM, model-based testing approaches [33, 10] were used
to assess on Java Card BCV implementations. As of today, no full
reference implementation or model of the Java Card BCV has been
proposed.

 The Oracle’s BCV implementation in version 2.2.2 was analyzed by
Faugeron et al. [17]. In this implementation, the authors identified an
issue in the branching instructions interpretation during the type-level
abstract interpretation performed by the BCV. The authors exploited this
issue to perform a type confusion in a local variable, undetected by
Oracle’s BCV. This issue in the BCV was patched by Oracle from version
3.0.3.

 Since the version 3.0.3, no security flaw identification or exploitation in the
Java Card BCV has been publicly signaled. In this paper, we come back to a
flaw discovered in the Java Card BCV from version 2.2.2 to 3.0.5 and we
describe an exploitation of this flaw. This vulnerability was first disclosed at

the CARDIS 2015 [24] conference. This article will introduce how this
vulnerability had be found, based on a fuzzing approach. After evaluating this
attack on several Java Card smart cards, a method to characterize the control
flow transfer was developed.

 Section 2 introduces our fuzzer and how a missing check in the Oracle’s
BCV implementation may allow an adversary to control a method offset and
thus to trigger unverified bytecode execution. Section 3 shows how to
succeed in exploiting this mechanism on a real Java Card product
to trigger the execution of native code injected in a communication
buffer. Finally, we evaluate our results on other Java Card products,
define a generic method to characterize the control flow transfer with
the black box approach and propose a countermeasure to prevent the
attack.

 2 A Flaw in the BCV

 2.1 The BCV Duty

The BCV enforces various security and consistency checks that guarantee each
embedded application remains confined in its own sandbox. These verifications
are performed on the CAP file, which is the binary representation of the
classes that are loaded on the card.

 The CAP file verification is performed in several passes. Passes 1 and 2
check that the format of the CAP file is consistent with the JCVM
specification [30], excluding the portions of the archive that contain the
methods bytecodes. Pass 3 performs a symbolic execution of the methods
bytecodes to ensure type correctness. Eventually, pass 4 checks that symbolic
references from instructions to classes, interfaces, fields, and methods are
correct.

 2.2 Verification of the CAP File Structure

The CAP file is composed of twelve different components, with internal and
external dependencies, that are checked during the CAP file verification.
Internal dependencies verification aims at validating the component properties
as defined by the Java Card specification. External dependencies checks
validate that redundant information specified in different components are
compliant with each other. For example, each component has a size field that
must be compliant with the component-sizes array contained in the
Directory component where the sizes of every components are specified. An
overview of all external dependencies between components in a CAP file are
summarized in figure 1 borrowed from [19].

[image: PIC]

Fig. 1: External dependencies between components in a CAP file [19].

 Among the twelve components stored in the CAP file, we will focus on the
following components:

 	the Method component stores the code of all methods in the package,
 concatenated as a set of bytes;

 	the Constant Pool component contains an entry for each of classes,
 methods and fields referenced in the Method component;

 	the Class component describes each classes and interfaces defined in
 the package, in a way that allows executing operations on that class
 or interface;

 	the Descriptor component provides sufficient information to parse and
 verify all elements of the CAP file. This component is the main entry
 point for a bytecode verification.

 The Descriptor component is the keystone of the BCV operations, but it
has little or no importance for the card’s processing and is therefore optionally
provided during the loading of the applet.

 Because of its purpose, the Descriptor component references several
elements in the other components, and even provides redundant information
with regards to these components. On the opposite, no component references
the Descriptor component.

 Considering the complex structure of the CAP file, parsing its structure
for verification purpose is error prone. In order to identify flaws in
the CAP file verifier, we applied a testing technique known for its
good results on complex files and protocols structures, the fuzzing
technique.

 2.3 Fuzzing the bytecode verifier

 Introduction to fuzzing

Fuzzing is a simple and efficient technique to identify defects in software
implementations as for example in [1, 2, 13, 18, 22, 36, 37]. It is generally
used as a black box testing approach in which test cases are automatically

generated and submitted to the system under testing in order to stress its
robustness. This testing technique allows exploring a large amount of
tests in an automatic way, what would be fastidious to do manually.
Generally speaking, a fuzzer is composed of three main functions:

 	data generation: create the data that will be sent to the tested target,

 	data transmission: send the data to the tested target,

 	target monitoring and logging: detect and record target anomalies.

We use the fuzzing testing methodology to seek vulnerabilities in the
implementation of the bytecode verifier. As the BCV enforces all the
requirements imposed by the JCVM specification, our work aims at
discovering specification violations undetected by the BCV. Although other
works have already explored the automated test generation approach to
discover flaws in the bytecode verifier through fuzzing and grammar
based generation [12, 35], these works are mainly focused on the
passes 3 (symbolic execution) and 4 (symbolic references checks) of the
bytecode verification that guarantee validity of instruction type and
instructions references. They are basically confined to the method’s bytecode
components of the CAP file. However, the structure of a CAP file is
complex, and its structural correctness is fundamental for a correct
execution of the code. In order to highlight the complexity of the CAP file
structure, and to motivate the need of fuzzing testing on all elements
of the archive beyond the bytecodes, we present a short example of
dependencies that exist between the different components of a CAP
file.

 Applying fuzzing technique to the Bytecode Verifier

We designed a CAP file fuzzer whose fuzzing method is inspired by genetic
algorithms. It mimics genetic mutations and natural selection to find
relevant test cases, a technique also known as evolutionary fuzzing
 [9, 15, 38]. In our BCV fuzzer, each test case is metaphorically equivalent
to an individual in a population’s generation. The JCVM behaviors
caused by a test case are fully defined by the CAP file used for this test
case, the same as the phenotype of an individual is fully defined by

its DNA. Continuing along the genetic metaphor, we consider the
bytes composing the CAP file as the nucleotides of the DNA of an
individual. Our fuzzing approach is the same as the evolution of a race
along the generations. Evolution relies on mutations that occur on the
DNA of the individuals of a generation, creating new combinations
of nucleotides (i.e. genes). Along a process called natural selection,
mutations that fit the most the hostile environment (e.g., predators)
are conserved in the population and can be transmitted to the next
generation, thus improving adaptation of the race to its environment.
Similarly, in our BCV fuzzer, fuzzing is performed through mutation of the
CAP file sequence. We implement the three main point mutations
that occur in DNA mutation: insertion, deletion and transversion.
The mutations perform the following modifications on the CAP file:

 	insertion: insert a byte in the CAP file,

 	deletion: delete a byte in the CAP file,

 	transversion: modify the value of a byte in the CAP file.

 During insertion and deletion mutations, only a subset of all mutations
(composed of some remarkable and random values) is used to prevent
combinatorial explosion. The fuzzer also preserves high level grammatical
constraints on the CAP file (e.g., update of array size when performing
insertion mutation on an array). Consequently, mutations affect only a
targeted portion of the CAP while the overall structure remains correct. The
natural selection is performed by a single predator, the BCV. Only mutations
that create a valid CAP file according to the Java Card BCV are allowed to
carry onto the next generation, and to pursue the fuzzing process by mutation.
All the valid mutated CAP files are then executed in a simulator,
looking for mutated CAP files that triggers an unexpected behavior
of the JCVM (crash, unexpected data output). These CAP files are
hand-analyzed, along with the bug reports, to determine the origin of the
misbehavior.

 An analysis of the bug reports generated by the BCV fuzzer brought us to
identify a missing external dependency check between the Class component
and the Descriptor component. We present the details of this BCV flaw and
the resulting exploitation in the next sections.

 2.4 Missing Check in the BCV

The missing check we have identified in the BCV involves the token-based
linking scheme. This scheme allows downloaded software to be linked with
API already embedded on the card. Accordingly, each externally visible item
in a package is assigned a public token that can be referenced from another
package. There are three kinds of items that can be assigned public tokens:
classes, fields and methods. The bytecodes in the Method component refer to
the items in the Constant Pool component, where the tokens required to
perform the bytecode operation (e.g., class and method token for a method
invoke) are specified.

 When the CAP file is loaded on the card, the tokens are linked with the
API and resolved to the internal representation used by the VM. The
linking process operates on the bytecode and is performed in several
steps:

 	each token is an index in the Constant Pool component. The item
 stored at the provided index specifies the public tokens of the required
 items (e.g., class and method token for a method invoke);

 	the tokens are resolved into the JCVM internal representation. For a
 method invoke, the class token identifies a class_info element in the
 Class component;

 	in the class_info element, the public_virtual_method_table
 array stores the methods internal representation. The method token
 is an index into the public_virtual_method_table array;

 	the element in the public_virtual_method_table at the method
 token index is an absolute offset in the Method component to the
 header and the bytecode of the method to execute.

 The figure 2 summarizes the linking process for a method call.

[image: PIC]

Fig. 2: Overview of the linking process for a method call.

 The absolute offset in the Method component to the header and the
bytecode of the method to execute is a redundant information in the CAP file
as it is stored both in the public_virtual_method_table elements in the
Class component and in the method_descriptor_info elements in the
Descriptor component. The offset information in the Descriptor component is
used exclusively by the BCV before loading, while the offset information in the
Class component is used exclusively by the JCVM linker on card.
Thus, any ill-formed offset information in the Class component remains
undetected by the BCV checks, but is still used by the JCVM linker on
card.

 2.5 Exploiting the BCV flaw

As presented so far, the BCV flaw we expose allows manipulating the method
offset information in the Class component while remaining consistent with the
BCV checks. The exploitation of this flaw consists in deleting an entry in the
public_virtual_method_table of a class_info element in the CAP file.
The resolution of the corresponding method offset during the JCVM
linking leads to an overflow in the Class component, as presented in
figure 3. This overflow brings the JCVM to interpret the content of
the memory area following the Class component on card as a method
index.

[image: PIC]

Fig. 3: Overflow in the linking process with for a method call.

 The loading order of the CAP components is defined by the Java Card
specification. This order specifies that the Method component is loaded right
after the Class component. It is thus very likely that the Method component is
stored next to the Class component in the card’s memory. As a result, the
Class component overflow is likely to fall into the Method component.
In this eventuality, the offset of the method resolved in overflow is
the numerical value of a bytecode in the Method component, that
can be controlled by the applet developer. The figure 4 presents an
exploitation of the Class component overflow through the Method
component.

[image: PIC]

Fig. 4: Figure on left shows a successful linking in the Class component.
Figure on the right shows the Class component overflow during linking
when grayed out elements are deleted. Class component overflow falls into
the Method component.

 3 Code Injection from a Bytecode Verified Applet

In the previous section, we have presented, in the eventuality of a favorable
memory mapping, how an attacker can exploit a BCV flaw to specify an
arbitrary method offset in a BCV validated applet. In this section, we present
the exploitation of this flaw on a real product that allows us to inject and
execute native code in a communication buffer from a BCV validated
applet.

 The attack steps necessary to reach arbitrary native code on the Java
platform are summed up hereafter and detailed in the next sections. First, we
exploit the BCV flaw presented in section 2 to forge an arbitrary method
header in the Method component. This arbitrary method header is then used
to abuse the native method execution mechanism of the platform and thus
create a buffer overflow in the native method table. Finally, this buffer
overflow allows dereferencing the communication buffer address as a
native function. As a consequence, the data sent to our verified applet
through the communication channel are executed as native code on the
JCVM.

 This full attack is a proof of concept to demonstrate that the flaw
discovered in the Oracle BCV may jeopardize the security of Java Card smart
cards.

 3.1 Native Execution in the Virtual Machine

We validate the exploitation of the BCV flaw on an open Java Card platform
embedded on an ARM micro-controller. This Java Card platform was
provided in the context of a security expertise, thus both the code and the
memory mapping of the VM were made available.

 The runtime environment of this platform provides a mechanism that
allows switching execution to native implementations of Java Card API
methods for performance reasons. The implementation of this mechanism is
similar to the Java Native Interface (JNI) mechanism provided in classical
Java VMs [27].

 In the JNI approach, the native methods are identified through a
dedicated flag (ACC_NATIVE) in the method header. According to the JCVM
specification, the native header flag is only valid for methods located in the

card mask. Therefore a native method loaded in a CAP file is not compliant
with the Java Card specification, and is thus rejected by the off-card
verifier.

 The native method resolution in JNI relies on interface pointers. An
interface pointer is a pointer to a pointer. This pointer refers to an array of
pointers, each one itself pointing on to an interface function. Each interface
function is stored at a predefined offset inside the array. Figure 5 illustrates
the organization of an interface pointer. The offset inside the array where the
native function pointer is to be found is provided in the body of the native
method.

[image: PIC]

Fig. 5: JNI functions and pointers [26].

 3.2 Native execution from a validated applet

As presented in section 2, a missing check in the BCV can cause an overflow
that brings the VM to resolve the method offsets outside the Class
component. In the VM implementation, we use to exploit our attack, the Class
component overflow falls into the Method component so the value of the
method offset can be specified as the numerical value of a bytecode in the
Method component.

 According to the JCVM specification [30], the offset of a method must
point to a method header structure in the Method component, followed
by the bytecode of the method. When exploiting the BCV flaw, the
offset is controlled by the developer so it can point to any portion of
the Method component. This can be used to make the method offset
pointing on a portion of the bytecode that can be interpreted as a
method header. The iipush bytecode can be used for this purpose,
as its operand is a 4-bytes constant that is not interpreted by the
BCV. This 4-bytes constant is thus used to code a method header
containing the ACC_NATIVE flag and the native method index. This iipush
bytecode is accepted by the BCV because it forms a valid bytecode
sequence, but when the operand is interpreted as a native method
header (through an overflow on the Class component), the control
flow switches to native execution. Figure 6 shows the attack path
from the Class component overflow to the native execution of a JNI
method.

[image: PIC]

Fig. 6: Exploitation of the Class component overflow to execute a native
method.

 We were thus able, by specifying the adequate value for the method offset,
to execute any of the native methods provided by the VM in the array of JNI
native function pointers.

 3.3 Abusing the Native Execution Mechanism for Code Injection

The attack so far allows calling JNI native methods provided by the platform,
that are stored in an array of JNI native function pointers (or native
array). When a native method call occurs, the switch from the Java
runtime environment to the native execution environment requires an
index in the native array to determine the native function pointer.
Experimentation on the target JCVM allowed us determining that
an overflow on the native array can be achieved by specifying the
relevant index in the native method body. Thus, any memory content
stored next to the native array can be exploited as a native function
pointer.

 An analysis of the memory mapping of the product shows that a memory
zone next to the native array contains a pointer to the communication buffer
used for Host Controller Protocol (HCP) communications. The HCP
protocol handles the transport layer of the Single Wire Protocol (SWP)
protocol, involved in Near Field Communication (NFC) communications
with smart cards. HCP messages encapsulates ISO7816 Application
Protocol Data Unit (APDU) that are conveyed to the smart card over
SWP.

 Using the overflow on the native array, we are able to use the HCP
communication buffer pointer as native function pointer. The execution of this
native function pointer leads to executing the content of the HCP
communication buffer as a native assembly function.

 The HCP protocol has several properties that limit the use of the HCP
communication buffer as a native payload injection placeholder:

 	HCP packets are prefixed with a HCP message header and an HCP
 packet header. These headers are interpreted as native assembly
 opcodes.

 	HCP enforces fragmentation of messages, which limits packets size
 to 27 bytes. The entire native payload must thus be contained in 27

 bytes.

 In order to gain more space to inject our attack payload, we inject a
minimal payload in the HCP communication buffer whose only purpose
is to redirect the execution flow to the ISO7816 APDU buffer. This
minimal redirection payload is presented in Table 1. Because the HCP
communication buffer pointer is used as a function pointer, all the HCP buffer
is interpreted as native code, including packet header, message header
and encapsulated APDU header. These header bytes produce no side
effect as shown in Table 1, which lets the redirection payload execute
properly.

 	
	
	
	
	

	HCP message
	Interpretation
	 Native code
 	 Comment

	
	
	
	
	

	 	Packet header 	 	 	
	82 50 	Message header 	STR 	r2, [r0, r2]	No side effect

	
	
	
	
	

	00 10 	CLA/INS 	ASRS	r0, r0, #0 	No side effect

	
	
	
	
	

	00 00 	P1/P2 	MOVS	r0, r0 	No side effect

	
	
	
	
	

	14 00 	Lc/padding 	MOVS	r4, r2 	No side effect

	
	
	
	
	

	E9 2D 5F FC 	Data 	PUSH	{r2-r12, lr}	

	
	
	
	
	

	F6 4A 54 D0 	 	MOVW	r4, #0xADD0 	

	
	
	
	
	

	F6 CA 54 D1 	 	MOVT	r4, #0xADD1 	r4 = &apduBuffer

	
	
	
	
	

	47 A0 	 	BLX 	r4 	branch to apduBuffer

	
	
	
	
	

	E8 BD 9F FC 	 	POP 	{r2-r12, pc}	

	
	
	
	
	

	

 Table 1: Native payload in the HCP buffer that redirects the execution
flow to the APDU buffer. Relevant payload data is grayed out.

 The ISO7816 protocol has broaden fragmentation constraints, which offers
sufficient space for a full native payload injection. We present in Table 2 a
full payload injected in the APDU buffer that branches to a low level
read/write OS function. Because the start address execution is chosen
from the HCP message buffer payload, the header bytes are skipped
and the native execution starts at the push instruction (Table 2, 3rd
row).

 	
		
	
	
	
	

		 APDU
 	 Native code
 	 Comment

	
		
	
	
	
	

	 1	00 12 00 00 31	Header	 	 	CLA/INS/P1/P2/Lc

	
		
	
	
	
	

	 2	 B1 FA 15 00 	 Data 	 	 	source reading address

	
		
	
	
	
	

	 3	 2D E9 FF 5F 	 	PUSH	{r0-r12, lr} 	

	
		
	
	
	
	

	 4	 F6 4A 56 D0 	 	MOVW	r6, #0xADD0 	

	
		
	
	
	
	

	 5	 F6 CA 56 D1 	 	MOVT	r6, #0xADD1 	r6 = apduBuffer

	
		
	
	
	
	

	 6	 35 68 	 	LDR 	r5, [r6,#0x00] 	r5 = *apduBuffer

	
		
	
	
	
	

	 7	 28 46 	 	MOV 	r0, r5 	

	

		
	
	
	
	

	 8	 00 F1 09 00 	 	ADD 	r0, r0, #0x6A 	 *dest: apduBuffer + 0x6A

	

		
	
	
	
	

	 9	 D5 F8 05 10 	 	LDR 	r1, [r5, #0x08]	 *src: *(apduBuffer + 8)

	

		
	
	
	
	

	10	 4F F0 40 02 	 	MOV 	r2, #0x40 	length: 0x40

	

		
	
	
	
	

	11	 F6 4A 54 D2 	 	MOVW	r4, #0xADD2 	

	

		
	
	
	
	

	12	 F6 CA 54 D3 	 	MOVT	r4, #0xADD3 	 r4 = *read_function_ptr()

	

		
	
	
	
	

	13	 A0 47 	 	BLX 	r4 	call method

	

		
	
	
	
	

	14	 BD E8 FF 9F 	 	POP 	{r0-r12, pc} 	

	

		
	
	
	
	

	

 Table 2: Native payload in the ISO7816 APDU buffer that calls an OS
function to read an arbitrary memory zone and copy the result to the
APDU buffer. Relevant payload data is grayed out.

 The payload initializes the source parameter to the first 4 bytes of the
payload (Table 2, 2nd row), such that the reading address can be selected
directly in the APDU. Then, it initializes the destination address (where the
read bytes are copied) to the address of the APDU buffer following
the payload, such that the read bytes are immediately available for
sending back through the APDU buffer. Finally, it branches to the low
level OS function that performs the reading operation. As a result,
any physical address of the card can be accessed through this native
payload.

[image: PIC]

Fig. 7: Exploitation of the native array overflow to execute native code
in the APDU buffer.

 Figure 7 shows the execution flow from the native array overflow to the
redirection payload in the HCP message buffer to the final attack payload in
the APDU buffer. We were able to integrally dump the card memory and to
reverse it using commercial reversing tools. The reversed code was identified as
the code of the embedded JCVM.

 4 Other Experimental Results

To evaluate the consequence of the BCV flaw on a broader range of virtual
machine implementations, we tested, on different smart cards from different
manufacturers, how much each of them supports the installation of an
ill-formed applet. We evaluated seven cards from three distinct manufacturers
(a, b and c). Each card name is associated with the manufacturer reference
and its Java Card specification [30]. The list of evaluated Java Card smart
cards is presented in table 3.

 	
	
	
	

	 	Java Card
	GlobalPlatform
	
	Reference
	 Platform
	 Version
	 Details

	
	
	
	

	
	
	
	

	 a-22a 	 2.2.1 	 2.1.1 	36 kB EEPROM, RSA

	
	
	
	

	 a-22b 	 2.2.2 	 2.1.2 	80 kB EEPROM, RSA

	
	
	
	

	 a-30c 	 3.0.4 	 2.2.1 	80 kB EEPROM, ePassport

	
	
	
	

	 b-30a 	 3.0.1 	 2.2.1 	1 MB Flash memory, (U)SIM

	
	
	
	

	 c-21a 	 2.1.1 	 2.0.1 	128 kB EEPROM, SIM

	
	
	
	

	 c-21b 	 2.1.1 	 2.0.1 	64 kB EEPROM, RSA, AES

	
	
	
	

	 c-22c 	 2.2.2 	 2.2.2 	256 kB Flash memory, (U)SIM

	
	
	
	

	

 Table 3: Cards evaluated during this experimentation.

 None of the evaluated card embeds an embedded BCV. On each card, an
ill-formed applet can be installed and, if the installation succeeds, the applet is
executed. The ill-formed applet has a dereferenced method in the public
virtual methods table. Table 4 sums up the cards reactions.

 	
	
	

	Ref.
 	 Statut
 	
	
	
	

	
	
	

	a-22a	PCSC error: card mute. 	
✗

	
	
	

	a-22b	PCSC error: card mute. 	 ✗

	
	
	

	a-30c	PCSC error: card mute. 	 ✗

	
	
	

	b-30a	No error: the card return the value 0x0701. 	 ✗

	
	
	

	c-21a	Global platform error: error during the loading process (applet rejected).	✓

	
	
	

	c-21b	Global platform error: error during the loading process (applet rejected).	✓

	
	
	

	c-22c	Global platform error: error during the loading process (applet rejected).	✓

	
	
	

	

 Table 4: Statuts of each evaluated cards.

 As shown in table 4, cards react differently to the ill-formed CAP
file installation and execution. The cards with the symbol (✓) detect
the ill-formed CAP file during the installation and reject it. On the
other cards, marked with the symbol (✗), installation and execution
succeed.

 Successful executions cause either unexpected card response or card mute.
Unexpected card response indicates that unexpected code execution occurred.
Card mute may result from infinite loop or card’s reaction to illegal code,
which also indicates unexpected code execution.

 These behaviors proof that the control flow of the JCVM is modified. We
can thus conclude that the BCV flaw presented in this article can be exploited
on a range of different Java Card smart cards.

 The full attack path that results in arbitrary native code execution requires
information about the memory mapping and the JCVM implementation that
were not available for these tests. Therefore, we did not attempt to reproduce
the full attack path.

 4.1 Characterizing the Control Flow Transfer

The attack presented in section 2.5 exploits an overflow that occurs during
the linking process and forces the program counter to an incorrect value
during execution. As a result, the control flow is transferred to an incorrect
memory zone. The exploitation of the full attack path requires knowning
where the control flow is transferred thus we designed a characterization
process that allows an attacker determining the jump target location resulting
from the offset overflow.

 During the linking process, the offset of the method to resolve is sought in
the public_virtual_method_table of a class_info element in the Class
component of the CAP file. When an attacker deletes the required offset in the
CAP file, the offset is taken in overflow in the next memory bytes. As
the attacker can delete as many offsets as there are methods in the
CAP file, several bytes of overflow memory can be used as method
offset.

 To characterize the control flow resulting from an unknown offset we
design a method that can be executed from any point, regardless of where the
erroneous control flow has jumped. To reach this goal, each element of the
method should be interpretable both as a method header and a Java Card

instruction. If the overflow offset does not jump in the characterization
method, another offset is deleted in the CAP file and thus the next bytes in
memory are used as offset. The process is repeated until the jump target place
is located in the characterization method. Because offset are signed values, the
Method component can be located in memory either before or after the Class
component.

 Constraints of a Java Card Method

From the Java Card specification [30], we extracted the constraints which
define a valid Java Card method.

 A Java Card method is composed of two elements, a header and a set of
instructions which form the method’s bytecode. According to the Java Card
specification, the header is a structure defined as a method_header_info or
an extended_method_header_info. The Listing 1.1 shows those structures,
where the type u1 defines an unsigned byte (8-bit length) and the type
bit[4], a 4-bit item.

method_header_info { extended_method_header_info {
 u1 bitfield { u1 bitfield {
 bit[4] flags bit[4] flags
 bit[4] max_stack bit[4] padding
 } }
 u1 bitfield { u1 max_stack
 bit[4] nargs u1 nargs
 bit[4] max_locals u1 max_locals
 }
} }

 Listing 1.1:
 Java
 Card
 method
 defines
 from
 the
 JCVM
 specification.

 As presented in the Listing 1.1, a method header is defined by the
following elements:

 	The flags item is a mask of modifiers which define this method –

 standard, extended or abstract method. The native method is not
 supported by the JCVM specification [30].

 	The max_stack item indicates the maximum number of words
 required on the operand stack during execution of this method.

 	The nargs item represents the number of words required to represent
 the parameters passed to the method.

 	The max_local item indicates the number of words required to
 represent the local variables declared by this method without the
 method parameters.

 The method instructions are composed of opcodes, encoded on 1 byte, and
a set of 1-byte arguments. The valid opcode values are comprised between
0x00 (NOP) and 0xB8 (putfield_i_this). Values between 0xB9 and 0xFD
are reserved for future use and cannot be used in compliant JCVM
implementations. The opcode values 0xFE and 0xFF are intended to provide
back doors or traps to implementation-specific functionality implemented in
software and hardware, respectively [30].

 We extracted and factorized all method constraints defined by
the JCVM specification, and we obtained the model shown in the
Listing 1.2.

method = header & bytecodes

header = method_header_info | extended_method_header_info
method_header_info = {
 // method_header_info has a 4-bit element.
 flags = {0x0, 0x4}, // 0x0: a standard method
 // 0x4: an abstract method
 max_stack = [0x0, 0xF],
 narg = [0x1, 0xF] // [0x0, 0xF] for static method
 max_local = [0x0, 0xF]
}
extended_method_header_info = {
 // extended_method_header_info has a 1-byte element
 flags = {0x8, 0xC},// 0x8: an extended method
 // 0xC: an extended abstract method
 padding = 0x0,
 max_stack = [0x00, 0xFF],
 nags = [0x01, 0xFF], // [0x00, 0xFF] for static method
 max_local = [0x00, 0xFF],
}

if (flags & EXTENDED_METHOD) // Is it an extended method?
 bytecodes = {} // empty set
else
 bytecodes = instruction+ // + = one or more

instruction = opcode & (argument)* // * = zero or more
opcode = [0x00, 0xB8] // Reserved values from 0xB9 to 0xFF
argument = [0x00, 0xFF]

 Listing 1.2:
 Constraints
 which
 define
 a
 Java
 Card
 method.

 Solving the Constraints

As the attacker cannot control the resolution of the invokevirtual
instruction offset resulting from the overflow in the Class component, our
characterization method aims at implementing a method which can be
executed from any point. In this method, each byte can be interpreted as
method header, an opcode or an argument. Indeed, as the Class component is
generally located before the Method component in the card, an overflow
from the Class component may reach the first method in the Method
component.

 Since the method constraints have been extracted from the Java Card
specification, we look for a set of bytes which is a solution to these
constraints.

 Design of a polymorphic method

From the method constraints defined in the Listing 1.2, we designed a method
which can be executed from any point. To make each byte of the method
interpretable as a valid execution entry point, they should be compliant with
the following rules:

 	Constraints on method_header_info ∪ constraints on
 extended_method_header_info

 	with:

 	Constraints on method_header_info = [0x01, 0x0F] ∪ [0x11,
 0xFF];

 	Constraints on extended_method_header_info = [0x80] ∪ [0x01,
 0xFF].

 After minimizing the constraints, the following rule can we obtained:

∀ bytecode ∈ {[0x01, 0x0F] ∪ [0x11, 0xFF]}

 To optimize the byte range value, we decided to exploit the exception
mechanism. Indeed, the exception mechanism allows redirecting the execution
flow to a finite set of handlers (exception handlers) from any point in the
execution flow, which is the desirable behaviour for our polymorphic
method.

 The Listing 1.3 shows a java program implementing a set of exceptions
thrown in the try-statement and caught in the appropriate catch-statement.

public void characterizedMethod(void) {
 try {
 // throw an exception();
 // throw an exception();
 // etc., several times
 } catch (NullPointerException npe) {
 // Payload 1
 } catch (SecurityException se) {
 // Payload 2
 } catch (Exception e) {
 // Payload 3
 }
}

 Listing 1.3:
 A
 Java
 Card
 method
 which
 throws
 and
 catches
 exceptions.

 The function listed in the Listing 1.3 is compiled to the bytecode sequence
shown in the Listing 1.4.

public void characterizedMethod(void) {
 01 // flag: 0 max_stack: 1
 01 // narg: 0 max_local: 1
 01 sconst_null
 93 athrow
 60 01 ifeq 01
 01 sconst_null
 93 athrow // throw the exception.
 ...
 // Catches area
 ...
 7A return // This bytecode is never reached.
}

 Listing 1.4:
 A
 valid
 method
 bytecode

 which
 can
 be
 executed
 from
 any
 point.

 In this bytecode sequence, the pattern 01 01 93 60 is repeated.
Depending on the starting point in this sequence, different bytecode patterns
can be ran. The Table 5 lists each pattern possibilities and the resulting
exception thrown.

 	
	
	

	 Sequence
 	 Remark 	 Exception

	
	
	

	
	
	

	01 01 93 60 	 	NullPointerException

	
	
	

	01 93 60 	 Empty stack 	 SecurityException

	
	
	

	93 60 01 01 93 60	Invalid header	 SecurityException

	
	
	

	60 01 01 93 60 	Invalid header	 SecurityException

	
	
	

	

 Table 5: Executed sequences and exceptions thrown.

 The two last sequences, 93 60 01 01 93 60 and 60 01 01 93 60, have
an invalid header. Leading 9 and 6 nibbles cannot be valid header flags
value according the Java Card specifications. However, several JCVM
implementations use a binary masks on the method headers to retrieve the
relevant method’s flags. Therefore, in this case the flag 9 may be interpreted
as an extended method, and the flag 6 as an extended abstract method.
According to the Java Card specification, for security reasons, the Java Card
runtime environment implementation may also mute the card instead of
throwing a SecurityException [29].

 Finally, the attack payload is placed in the exception handlers. Thus, when
an exception is thrown the execution flow is directed to the attack payload
regardless of the execution starting point.

 The approach introduced in this section aims at characterizing the effect of
the overflow on the public_virtual_method_table field. For that purpose,
we developed a polymorphic method which can be executed from any point.
This polymorphic method, based on the java exception mechanism, transfers
the execution flow to the exception handlers where the attack payload is
located.

 5 Conclusion, Countermeasure and Future Works

We show in this article how a missing check in the Oracle’s BCV implementation
can be exploited on a Java Card. This flaw was disclosed by an evolutionary
fuzzer. We demonstrated that this BCV issue has a critical impact on smart
cards security through a proof of concept exploitation on a JCVM
implementation. We have successfully managed to inject and execute native
code in a communication buffer, and finally gain full read/write OS
privileges on the whole card memory. Finally, we evaluated on a range of
different cards from different manufacturers that most of the JCVM
implementations do not protect themselves against the BCV issue
exploitation. As we evaluated cards in black box model, we faced the problem
of characterizing the control flow transfer. To resolve this issue, we designed a
polymorphic java method using method constraints. This method is
semantically correct, regardless of the execution starting point, and
redirects the execution flow to a single point where the attack payload is
located.

 Following our responsible disclosure of the BCV issue to Oracle, we

were allowed to publish this article and a new version of the BCV was
released3 .
This new BCV version detects the Class component inconsistency and thus
mitigate our attack. A loading process including mandatory bytecode
verification step with the latest Oracle’s BCV provides a valid countermeasure
against the attack presented in this paper.

 With the identification of a new flaw in the Oracle’s BCV implementation,
one sees that the BCV must be entirely verified to lower the risks of new
vulnerabilities disclosure. To reach this objective, an effort should be done to
specify the security and functional requirements a BCV must comply
with in order to protect JCVM implementations against this software
attack.

 References

 1. Pedram Amini. PaiMei-Reverse Engineering Framework. In RECON06:
 Reverse Engineering Conference, Montreal, Canada, 2006.

 2. Pedram Amini and A Protnoy. Sulley fuzzing framework, 2010.

 3. Guillaume Barbu, Guillaume Duc, and Philippe Hoogvorst. Java Card Operand
 Stack: Fault Attacks, Combined Attacks and Countermeasures. In Prouff [31],
 pages 297–313.

 4. Guillaume Barbu, Hugues Thiebeauld, and Vincent Guerin. Attacks on Java
 Card 3.0 Combining Fault and Logical Attacks. In Smart Card Research and
 Advanced Application, 9th IFIP WG 8.8/11.2 International Conference, CARDIS
 2010, Passau, Germany, April 14-16, 2010. Proceedings, pages 148–163, 2010.

 5. Reinhard Berlach, Michael Lackner, Christian Steger, Johannes Loinig, and
 Ernst Haselsteiner. Memory-efficient On-card Byte Code Verification for Java
 Cards. In Proceedings of the First Workshop on Cryptography and Security in
 Computing Systems, CS2 ’14, pages 37–40, New York, NY, USA, 2014. ACM.

 6. Guillaume Bouffard. A Generic Approach for Protecting Java Card Smart Card
 Against Software Attacks. PhD thesis, University of Limoges, Limoges, France,
 October 2014.

 7. Guillaume Bouffard, Julien Iguchi-Cartigny, and Jean-Louis Lanet. Combined
 Software and Hardware Attacks on the Java Card Control Flow. In Prouff [31],
 pages 283–296.

 8. Guillaume Bouffard and Jean-Louis Lanet. The ultimate control flow transfer
 in a Java based smart card. Computers & Security, 50:33–46, 2015.

 9. Sergey Bratus, Axel Hansen, and Anna Shubina. Lzfuzz: a fast
 compression-based fuzzer for poorly documented protocols. 2008.

10. Andrea Calvagna, Andrea Fornaia, and Emiliano Tramontana. Combinatorial
 Interaction Testing of a Java Card Static Verifier. In 2014 IEEE Seventh
 International Conference on Software Testing, Verification and Validation,
 Workshops Proceedings, March 31 - April 4, 2014, Cleveland, Ohio, USA, pages
 84–87. IEEE Computer Society, 2014.

11. Andrea Calvagna and Emiliano Tramontana. Automated Conformance Testing
 of Java Virtual Machines. In Leonard Barolli, Fatos Xhafa, Hsing-Chung Chen,
 Antonio F. Gómez-Skarmeta, and Farooq Hussain, editors, Seventh International
 Conference on Complex, Intelligent, and Software Intensive Systems, CISIS 2013,
 Taichung, Taiwan, July 3-5, 2013, pages 547–552. IEEE Computer Society, 2013.

12. Andrea Calvagna and Emiliano Tramontana. Combinatorial validation testing
 of Java card byte code verifiers. In Enabling Technologies: Infrastructure for
 Collaborative Enterprises (WETICE), 2013 IEEE 22nd International Workshop
 on, pages 347–352. IEEE, 2013.

13. Gabriel Campana. Fuzzgrind: an automatic fuzzing tool. Hack.lu, 2009.

14. Ludovic Casset. Development of an Embedded Verifier for Java Card Byte
 Code Using Formal Methods. In Lars-Henrik Eriksson and Peter A. Lindsay,
 editors, FME 2002: Formal Methods - Getting IT Right, International Symposium
 of Formal Methods Europe, Copenhagen, Denmark, July 22-24, 2002, Proceedings,
 volume 2391 of Lecture Notes in Computer Science, pages 290–309. Springer, 2002.

15. Jared DeMott, Richard J. Enbody, and William F. Punch. Revolutionizing
 the field of grey-box attack surface testing with evolutionary fuzzing. BlackHat
 and Defcon, 2007.

16. Emilie Faugeron. Manipulating the Frame Information with an Underflow
 Attack. In Aurélien Francillon and Pankaj Rohatgi, editors, Smart Card Research
 and Advanced Applications - 12th International Conference, CARDIS 2013, Berlin,
 Germany, November 27-29, 2013. Revised Selected Papers, volume 8419 of Lecture
 Notes in Computer Science, pages 140–151. Springer, 2013.

17. Emilie Faugeron and Sebastien Valette. How to hoax an off-card verifier.
 e-smart, 2010.

18. Patrice Godefroid, Michael Y Levin, and David Molnar. Sage: whitebox
 fuzzing for security testing. Queue, 10(1):20, 2012.

19. Samiya Hamadouche. Étude de la sécurité d’un vérifieur de byte code
 et génération de tests de vulnérabilité. Master’s thesis, University M’Hamed
 Bougara of Boumerdes, Faculty of Sciences, LIMOSE Laboratory, 5 Avenue de
 l’indépendance, 35000 Boumerdes, Algeria, 2012.

20. Samiya Hamadouche, Guillaume Bouffard, Jean-Louis Lanet, Bruno
 Dorsemaine, Bastien Nouhant, Alexandre Magloire, and Arnaud Reygnaud.
 Subverting Byte Code Linker service to characterize Java Card API. In Seventh
 Conference on Network and Information Systems Security (SAR-SSI), pages 75–81,
 May 2012.

21. Samiya Hamadouche and Jean-Louis Lanet. Virus in a smart card: Myth or
 reality? Journal of Information Security and Applications, 18(2-3):130–137, 2013.

22. Julien Lancia. Un framework de fuzzing pour cartes à puce: application aux
 protocoles emv. In Symposium sur la Sécurité des Technologies de l’Information
 et des Communications (SSTIC), page 82, 2011.

23. Julien Lancia. Java Card Combined Attacks with Localization-Agnostic
 Fault Injection. In Stefan Mangard, editor, Smart Card Research and Advanced
 Applications - 11th International Conference, CARDIS 2012, Graz, Austria,
 November 28-30, 2012, Revised Selected Papers, volume 7771 of Lecture Notes in
 Computer Science, pages 31–45. Springer, 2012.

24. Julien Lancia and Guillaume Bouffard. Java Card Virtual Machine
 Compromising from a Bytecode Verified Applet. In Smart Card Research and
 Advanced Applications - 14th International Conference, CARDIS 2015, Bochum,
 Germany, November 2015.

25. Xavier Leroy. Bytecode verification on Java smart cards. Softw., Pract. Exper.,
 32(4):319–340, 2002.

26. Sheng Liang. The Java Native Interface: Programmer’s Guide and
 Specification. Addison-Wesley Professional, first edition edition, June 1999.

27. Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
 Machine Specification. Java Series. Addison-Wesley, May 2014.

28. Wojciech Mostowski and Erik Poll. Malicious Code on Java Card Smartcards:
 Attacks and Countermeasures. In Gilles Grimaud and François-Xavier Standaert,
 editors, Smart Card Research and Advanced Applications, 8th IFIP WG 8.8/11.2
 International Conference, CARDIS 2008, London, UK, September 8-11, 2008.
 Proceedings, volume 5189 of Lecture Notes in Computer Science, pages 1–16.
 Springer, 2008.

29. Oracle. Java Card 3 Platform, API Specification, Classic Edition. Number
 Version 3.0.5. Oracle, Oracle America, Inc., 500 Oracle Parkway, Redwood City,
 CA 94065, September 2011.

30. Oracle. Java Card 3 Platform, Virtual Machine Specification, Classic Edition.
 Number Version 3.0.5. Oracle, Oracle America, Inc., 500 Oracle Parkway, Redwood
 City, CA 94065, 2015.

31. Emmanuel Prouff, editor. Smart Card Research and Advanced Applications
 - 10th IFIP WG 8.8/11.2 International Conference, CARDIS 2011, Leuven,
 Belgium, September 14-16, 2011, Revised Selected Papers, volume 7079 of Lecture
 Notes in Computer Science. Springer, 2011.

32. Tiana Razafindralambo, Guillaume Bouffard, and Jean-Louis Lanet. A
 Friendly Framework for Hidding fault enabled virus for Java Based Smartcard. In
 Nora Cuppens-Boulahia, Frédéric Cuppens, and Joaquín García-Alfaro, editors,
 Data and Applications Security and Privacy XXVI - 26th Annual IFIP WG 11.3
 Conference, DBSec 2012, Paris, France, July 11-13,2012. Proceedings, volume 7371
 of Lecture Notes in Computer Science, pages 122–128. Springer, 2012.

33. Aymerick Savary, Marc Frappier, and Jean-Louis Lanet. Detecting
 Vulnerabilities in Java-Card Bytecode Verifiers Using Model-Based Testing. In
 Einar Broch Johnsen and Luigia Petre, editors, Integrated Formal Methods,
 10th International Conference, IFM 2013, Turku, Finland, June 10-14, 2013.
 Proceedings, volume 7940 of Lecture Notes in Computer Science, pages 223–237.
 Springer, 2013.

34. Emin Gün Sirer. Testing Java Virtual Machines. In International Conference
 on Software Testing And Review, San Jose, California, November 1999.

35. Emin Gün Sirer and Brian N Bershad. Testing Java virtual machines. In Proc.
 Int. Conf. on Software Testing And Review, 1999.

36. Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force
 vulnerability discovery. Pearson Education, 2007.

37. Ari Takanen, Jared D Demott, and Charles Miller. Fuzzing for software
 security testing and quality assurance. Artech House, 2008.

38. Joachim Wegener. Evolutionary testing of embedded systems. In Evolutionary
 Algorithms for Embedded System Design, pages 1–33. Springer, 2003.

 3 The BCV included in the Java Card SDK 3.0.5u1 prevents the introduced attack.
 This version was released on 19 August 2015.

fake_header.png
invokevirtual 32

Class component

Overflow

public_method_table_base

Method component

public_virtual_method_table]

offset

>

Tag

size

HandleCount

Method1
Method1Header
Method1Bytecode

Method2
Method2Header
Method2Bytecode

Method3
Method3Header
Method3Bytecode

Fake header

Native index
Method4

Method4Header

Method4Bytecode

0x07
0x0400
0x00

0x0128

iipush
argo, arg1
arg2, arg3

0x0001

0x0120

0x0128

Bytecode Method
iipush -
arg0 Header
(ACC_NATIVE flag)
argl
arg2 Native index
arg3

full_attack.png
Native Method
ACC_NATIVE

Native index

[“apdu_buffer

Header

Body

‘Aftack payload

native array

[UNI_native_method1

“UNI_native_method2

“UNI_native_method3

&hci_buffer

“hei_buffer

Redirection payload

o

class_method_overflow.png
Correct method linking

Overflow method linking

Class Class
Component Component
[[.]
Public 7 : offset 0x0015 PVYMT 7 : offset 0x0015
Virtual
Method 8: offset 0x001d Method Method 0 Method Header
Table Component
(PVMT) .
9: offset 0x0022 Method bytecode
Method Method 0 Method Header
Component

Method bytecode

_master-ebook0x.png
. . Array of pointers
INI interface pointer to]I\?I fm]:cﬁons

\ Pointer ——=»t Pointer B

per-thread JNI Pointer ~
data structure

Pointer

an interface
function

token_link_sum.png
invokevirtual 02

CPentry0

Constant Pool

CPentryl

e ——

Class

CPentry 2

| Class_info 0 =i

Public virtual
method table

7: offset
0x0015

class_oflow.png
invokevirtual 02

CPentry0

Constant Pool

CPentryl

Class ref0

L 5

CPentry 2

Token 8
| —
Public virtual 7: offset
Class Class_info 0 = ethod table 0x0015

Overflow

interdependances_compo.png
Reference Location
«—

Component

Applet Component 4—-
<

Header Component ——» -

Export Component

Method Component 4-
- |

Directory Component ——» -

Import Component

M

Class Component |4——— ﬂ

Static Field |4
Component |

M

Descriptor Component

Constant Pool |4———!

Component

cover.png

