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     Abstract.
     The Byte Code Verifier (BCV) is one of the most important security
     element in the Java Card environment. Indeed, embedded applets must
     be verified prior installation to prevent ill-formed applet loading. At the
     CARDIS 2015 conference, we disclosed a flaw in the Oracle BCV which
     affects the applet linking process and can be exploited on real world
     Java Card smart cards. In this article, we present how this vulnerability
     had  been  found  and  our  exploitation  of  this  flaw  on  a  Java  Card
     implementation that enables injecting and executing arbitrary native
     malicious code in the communication buffer from a verified applet. This
     attack was evaluated on several Java Card implementations with black
     box approach. In this case, as we cannot evaluate the effect of the control
     flow redirection caused by the attack, we develop a generic function which
     can be executed from any point.
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   1    Introduction

                                                                  
                                                                  
Developing smart card applications is a long and complex process. Despite
existing standardization efforts, e.g., concerning power supply, input and
output signals, smart card development used to rely on proprietary
Application Programming Interfaces (APIs) provided by each manufacturer.
The main drawback of this development approach is that the code of the
application can only be executed on a specific platform, thus lowering
interoperability.

   To improve the interoperability and the security of embedded softwares,
the Java Card technology was designed in 1997 to allow Java-based
applications for securely running on smart cards and similar footprint devices.
Due to the resources constraints of this device, only a subset of the Java
technology was retained in the Java Card technology. The trade-offs made on
the Java architecture to permit embedding the Java Card Virtual
Machine (JCVM) on low resource devices concern both functional and security
aspects.




   1.1    The Java Card Security Model

In the Java realm, some aspects of the software security relie on the Bytecode
Verifier (BCV). The BCV guarantees type correctness of the code, which in
turn guarantees the Java properties regarding memory access. For
example, it is impossible in Java to perform arithmetic operations on
references. Thus, it must be proved that the two elements on top of the
stack are bytes, shorts or integers before performing any arithmetic
operations. Because Java Card does not support dynamic class loading,
bytecode verification is performed at loading time, i.e. before installing the
Converted APplet (CAP) file onto the card. Moreover, most of Java Card
platforms do not embed an on-card BCV as it is expensive in terms of
memory consumption. Thus, bytecode verification is performed off-card,
either directly by the card issuer if he masters the loading chain, or
by a trusted third party that signs the application as a verification
proof.

   In addition to static off-card verification enforced by the BCV, the Java
Card Firewall performs runtime checks to guarantee applets isolation. The
Firewall partitions Java Card’s platform into separated protected object
spaces called contexts. Each package is associated to a context, thus
preventing instances of a package from accessing (reading or writing) data of
other packages, unless it explicitly exposes functionality through a Shareable
                                                                  
                                                                  
Interface Object.

   Despite all the security features enforced by the Java Card environment,
several attack paths  [6, 17, 7, 16, 8, 28, 4, 3, 32, 21, 23, 20] have been
found exploitable by the Java Card security community.




   1.2    State-of-the-art on Java Card Bytecode Verifier flaws

The BCV is a key component of the Java Card platform’s security. A single
unchecked element in the CAP file, while apparently insignificant, can
introduce critical security flaws in smart cards as shown in  [17].

   Although exhaustively testing a piece of software is a complex
problem, several attempts have been made to characterize the BCV of
the Java Standard Edition from a functional and security point of
view. In  [34], the authors rely on automatic test cases generation
through code mutation and use a reference Virtual Machine (VM)
implementation including a BCV as oracle. In  [11], a formal model of
the VM including the BCV is designed, then model-based testing is
used to generate test cases and to assess their conformance to the
model.

   In the Java Card community, several works aim at providing a reference
implementation of an off-card  [25] or an on-card  [14, 5] Java Card
BCV. These implementations are mainly designed from a formal model
and can be used to test the BCV implementation provided by Oracle.
As for the VM, model-based testing approaches  [33, 10] were used
to assess on Java Card BCV implementations. As of today, no full
reference implementation or model of the Java Card BCV has been
proposed.

   The Oracle’s BCV implementation in version 2.2.2 was analyzed by
Faugeron et al.  [17]. In this implementation, the authors identified an
issue in the branching instructions interpretation during the type-level
abstract interpretation performed by the BCV. The authors exploited this
issue to perform a type confusion in a local variable, undetected by
Oracle’s BCV. This issue in the BCV was patched by Oracle from version
3.0.3.

   Since the version 3.0.3, no security flaw identification or exploitation in the
Java Card BCV has been publicly signaled. In this paper, we come back to a
flaw discovered in the Java Card BCV from version 2.2.2 to 3.0.5 and we
describe an exploitation of this flaw. This vulnerability was first disclosed at
                                                                  
                                                                  
the CARDIS 2015  [24] conference. This article will introduce how this
vulnerability had be found, based on a fuzzing approach. After evaluating this
attack on several Java Card smart cards, a method to characterize the control
flow transfer was developed.

   Section 2 introduces our fuzzer and how a missing check in the Oracle’s
BCV implementation may allow an adversary to control a method offset and
thus to trigger unverified bytecode execution. Section 3 shows how to
succeed in exploiting this mechanism on a real Java Card product
to trigger the execution of native code injected in a communication
buffer. Finally, we evaluate our results on other Java Card products,
define a generic method to characterize the control flow transfer with
the black box approach and propose a countermeasure to prevent the
attack.




   2    A Flaw in the BCV




   2.1    The BCV Duty

The BCV enforces various security and consistency checks that guarantee each
embedded application remains confined in its own sandbox. These verifications
are performed on the CAP file, which is the binary representation of the
classes that are loaded on the card.

   The CAP file verification is performed in several passes. Passes 1 and 2
check that the format of the CAP file is consistent with the JCVM
specification  [30], excluding the portions of the archive that contain the
methods bytecodes. Pass 3 performs a symbolic execution of the methods
bytecodes to ensure type correctness. Eventually, pass 4 checks that symbolic
references from instructions to classes, interfaces, fields, and methods are
correct.




   2.2    Verification of the CAP File Structure

                                                                  
                                                                  
The CAP file is composed of twelve different components, with internal and
external dependencies, that are checked during the CAP file verification.
Internal dependencies verification aims at validating the component properties
as defined by the Java Card specification. External dependencies checks
validate that redundant information specified in different components are
compliant with each other. For example, each component has a size field that
must be compliant with the component-sizes array contained in the
Directory component where the sizes of every components are specified. An
overview of all external dependencies between components in a CAP file are
summarized in figure 1 borrowed from  [19].
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Fig. 1:  External dependencies between components in a CAP file  [19].

                                                                  
                                                                  
   


   Among the twelve components stored in the CAP file, we will focus on the
following components: 

   
   	the Method component stores the code of all methods in the package,
   concatenated as a set of bytes;
   

   	the Constant Pool component contains an entry for each of classes,
   methods and fields referenced in the Method component;
   

   	the Class component describes each classes and interfaces defined in
   the package, in a way that allows executing operations on that class
   or interface;
   

   	the Descriptor component provides sufficient information to parse and
   verify all elements of the CAP file. This component is the main entry
   point for a bytecode verification.


   The Descriptor component is the keystone of the BCV operations, but it
has little or no importance for the card’s processing and is therefore optionally
provided during the loading of the applet.

   Because of its purpose, the Descriptor component references several
elements in the other components, and even provides redundant information
with regards to these components. On the opposite, no component references
the Descriptor component.

   Considering the complex structure of the CAP file, parsing its structure
for verification purpose is error prone. In order to identify flaws in
the CAP file verifier, we applied a testing technique known for its
good results on complex files and protocols structures, the fuzzing
technique.


   2.3    Fuzzing the bytecode verifier

   Introduction to fuzzing

Fuzzing is a simple and efficient technique to identify defects in software
implementations as for example in  [1, 2, 13, 18, 22, 36, 37]. It is generally
used as a black box testing approach in which test cases are automatically
                                                                  
                                                                  
generated and submitted to the system under testing in order to stress its
robustness. This testing technique allows exploring a large amount of
tests in an automatic way, what would be fastidious to do manually.
Generally speaking, a fuzzer is composed of three main functions:


   
   	data generation: create the data that will be sent to the tested target,
   

   	data transmission: send the data to the tested target,
   

   	target monitoring and logging: detect and record target anomalies.


We use the fuzzing testing methodology to seek vulnerabilities in the
implementation of the bytecode verifier. As the BCV enforces all the
requirements imposed by the JCVM specification, our work aims at
discovering specification violations undetected by the BCV. Although other
works have already explored the automated test generation approach to
discover flaws in the bytecode verifier through fuzzing and grammar
based generation  [12, 35], these works are mainly focused on the
passes 3 (symbolic execution) and 4 (symbolic references checks) of the
bytecode verification that guarantee validity of instruction type and
instructions references. They are basically confined to the method’s bytecode
components of the CAP file. However, the structure of a CAP file is
complex, and its structural correctness is fundamental for a correct
execution of the code. In order to highlight the complexity of the CAP file
structure, and to motivate the need of fuzzing testing on all elements
of the archive beyond the bytecodes, we present a short example of
dependencies that exist between the different components of a CAP
file.


   Applying fuzzing technique to the Bytecode Verifier

We designed a CAP file fuzzer whose fuzzing method is inspired by genetic
algorithms. It mimics genetic mutations and natural selection to find
relevant test cases, a technique also known as evolutionary fuzzing 
 [9, 15, 38]. In our BCV fuzzer, each test case is metaphorically equivalent
to an individual in a population’s generation. The JCVM behaviors
caused by a test case are fully defined by the CAP file used for this test
case, the same as the phenotype of an individual is fully defined by
                                                                  
                                                                  
its DNA. Continuing along the genetic metaphor, we consider the
bytes composing the CAP file as the nucleotides of the DNA of an
individual. Our fuzzing approach is the same as the evolution of a race
along the generations. Evolution relies on mutations that occur on the
DNA of the individuals of a generation, creating new combinations
of nucleotides (i.e. genes). Along a process called natural selection,
mutations that fit the most the hostile environment (e.g., predators)
are conserved in the population and can be transmitted to the next
generation, thus improving adaptation of the race to its environment.
Similarly, in our BCV fuzzer, fuzzing is performed through mutation of the
CAP file sequence. We implement the three main point mutations
that occur in DNA mutation: insertion, deletion and transversion.
The mutations perform the following modifications on the CAP file:


   
   	insertion: insert a byte in the CAP file,
   

   	deletion: delete a byte in the CAP file,
   

   	transversion: modify the value of a byte in the CAP file.


   During insertion and deletion mutations, only a subset of all mutations
(composed of some remarkable and random values) is used to prevent
combinatorial explosion. The fuzzer also preserves high level grammatical
constraints on the CAP file (e.g., update of array size when performing
insertion mutation on an array). Consequently, mutations affect only a
targeted portion of the CAP while the overall structure remains correct. The
natural selection is performed by a single predator, the BCV. Only mutations
that create a valid CAP file according to the Java Card BCV are allowed to
carry onto the next generation, and to pursue the fuzzing process by mutation.
All the valid mutated CAP files are then executed in a simulator,
looking for mutated CAP files that triggers an unexpected behavior
of the JCVM (crash, unexpected data output). These CAP files are
hand-analyzed, along with the bug reports, to determine the origin of the
misbehavior.

   An analysis of the bug reports generated by the BCV fuzzer brought us to
identify a missing external dependency check between the Class component
and the Descriptor component. We present the details of this BCV flaw and
the resulting exploitation in the next sections.
                                                                  
                                                                  




   2.4    Missing Check in the BCV

The missing check we have identified in the BCV involves the token-based
linking scheme. This scheme allows downloaded software to be linked with
API already embedded on the card. Accordingly, each externally visible item
in a package is assigned a public token that can be referenced from another
package. There are three kinds of items that can be assigned public tokens:
classes, fields and methods. The bytecodes in the Method component refer to
the items in the Constant Pool component, where the tokens required to
perform the bytecode operation (e.g., class and method token for a method
invoke) are specified.

   When the CAP file is loaded on the card, the tokens are linked with the
API and resolved to the internal representation used by the VM. The
linking process operates on the bytecode and is performed in several
steps:


   

   	each token is an index in the Constant Pool component. The item
   stored at the provided index specifies the public tokens of the required
   items (e.g., class and method token for a method invoke);
   

   	the tokens are resolved into the JCVM internal representation. For a
   method invoke, the class token identifies a class_info element in the
   Class component;
   

   	in  the  class_info element,  the  public_virtual_method_table
   array stores the methods internal representation. The method token
   is an index into the public_virtual_method_table array;
   

   	the element in the public_virtual_method_table at the method
   token index is an absolute offset in the Method component to the
   header and the bytecode of the method to execute.
   


   The figure 2 summarizes the linking process for a method call.
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Fig. 2:  Overview of the linking process for a method call.

                                                                  
                                                                  
   


   The absolute offset in the Method component to the header and the
bytecode of the method to execute is a redundant information in the CAP file
as it is stored both in the public_virtual_method_table elements in the
Class component and in the method_descriptor_info elements in the
Descriptor component. The offset information in the Descriptor component is
used exclusively by the BCV before loading, while the offset information in the
Class component is used exclusively by the JCVM linker on card.
Thus, any ill-formed offset information in the Class component remains
undetected by the BCV checks, but is still used by the JCVM linker on
card.


   2.5    Exploiting the BCV flaw

As presented so far, the BCV flaw we expose allows manipulating the method
offset information in the Class component while remaining consistent with the
BCV checks. The exploitation of this flaw consists in deleting an entry in the
public_virtual_method_table of a class_info element in the CAP file.
The resolution of the corresponding method offset during the JCVM
linking leads to an overflow in the Class component, as presented in
figure 3. This overflow brings the JCVM to interpret the content of
the memory area following the Class component on card as a method
index.
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Fig. 3:  Overflow in the linking process with for a method call.

                                                                  
                                                                  
   


   The loading order of the CAP components is defined by the Java Card
specification. This order specifies that the Method component is loaded right
after the Class component. It is thus very likely that the Method component is
stored next to the Class component in the card’s memory. As a result, the
Class component overflow is likely to fall into the Method component.
In this eventuality, the offset of the method resolved in overflow is
the numerical value of a bytecode in the Method component, that
can be controlled by the applet developer. The figure 4 presents an
exploitation of the Class component overflow through the Method
component.
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Fig. 4:  Figure on left shows a successful linking in the Class component.
Figure on the right shows the Class component overflow during linking
when grayed out elements are deleted. Class component overflow falls into
the Method component. 

                                                                  
                                                                  
   


   3    Code Injection from a Bytecode Verified Applet

In the previous section, we have presented, in the eventuality of a favorable
memory mapping, how an attacker can exploit a BCV flaw to specify an
arbitrary method offset in a BCV validated applet. In this section, we present
the exploitation of this flaw on a real product that allows us to inject and
execute native code in a communication buffer from a BCV validated
applet.

   The attack steps necessary to reach arbitrary native code on the Java
platform are summed up hereafter and detailed in the next sections. First, we
exploit the BCV flaw presented in section 2 to forge an arbitrary method
header in the Method component. This arbitrary method header is then used
to abuse the native method execution mechanism of the platform and thus
create a buffer overflow in the native method table. Finally, this buffer
overflow allows dereferencing the communication buffer address as a
native function. As a consequence, the data sent to our verified applet
through the communication channel are executed as native code on the
JCVM.

   This full attack is a proof of concept to demonstrate that the flaw
discovered in the Oracle BCV may jeopardize the security of Java Card smart
cards.




   3.1    Native Execution in the Virtual Machine

We validate the exploitation of the BCV flaw on an open Java Card platform
embedded on an ARM micro-controller. This Java Card platform was
provided in the context of a security expertise, thus both the code and the
memory mapping of the VM were made available.

   The runtime environment of this platform provides a mechanism that
allows switching execution to native implementations of Java Card API
methods for performance reasons. The implementation of this mechanism is
similar to the Java Native Interface (JNI) mechanism provided in classical
Java VMs  [27].

   In the JNI approach, the native methods are identified through a
dedicated flag (ACC_NATIVE) in the method header. According to the JCVM
specification, the native header flag is only valid for methods located in the
                                                                  
                                                                  
card mask. Therefore a native method loaded in a CAP file is not compliant
with the Java Card specification, and is thus rejected by the off-card
verifier.

   The native method resolution in JNI relies on interface pointers. An
interface pointer is a pointer to a pointer. This pointer refers to an array of
pointers, each one itself pointing on to an interface function. Each interface
function is stored at a predefined offset inside the array. Figure 5 illustrates
the organization of an interface pointer. The offset inside the array where the
native function pointer is to be found is provided in the body of the native
method.
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Fig. 5: JNI functions and pointers  [26].

                                                                  
                                                                  
   


   3.2    Native execution from a validated applet

As presented in section 2, a missing check in the BCV can cause an overflow
that brings the VM to resolve the method offsets outside the Class
component. In the VM implementation, we use to exploit our attack, the Class
component overflow falls into the Method component so the value of the
method offset can be specified as the numerical value of a bytecode in the
Method component.

   According to the JCVM specification  [30], the offset of a method must
point to a method header structure in the Method component, followed
by the bytecode of the method. When exploiting the BCV flaw, the
offset is controlled by the developer so it can point to any portion of
the Method component. This can be used to make the method offset
pointing on a portion of the bytecode that can be interpreted as a
method header. The iipush bytecode can be used for this purpose,
as its operand is a 4-bytes constant that is not interpreted by the
BCV. This 4-bytes constant is thus used to code a method header
containing the ACC_NATIVE flag and the native method index. This iipush
bytecode is accepted by the BCV because it forms a valid bytecode
sequence, but when the operand is interpreted as a native method
header (through an overflow on the Class component), the control
flow switches to native execution. Figure 6 shows the attack path
from the Class component overflow to the native execution of a JNI
method.
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Fig. 6:  Exploitation of the Class component overflow to execute a native
method.

                                                                  
                                                                  
   


   We were thus able, by specifying the adequate value for the method offset,
to execute any of the native methods provided by the VM in the array of JNI
native function pointers.


   3.3    Abusing the Native Execution Mechanism for Code Injection

The attack so far allows calling JNI native methods provided by the platform,
that are stored in an array of JNI native function pointers (or native
array). When a native method call occurs, the switch from the Java
runtime environment to the native execution environment requires an
index in the native array to determine the native function pointer.
Experimentation on the target JCVM allowed us determining that
an overflow on the native array can be achieved by specifying the
relevant index in the native method body. Thus, any memory content
stored next to the native array can be exploited as a native function
pointer.

   An analysis of the memory mapping of the product shows that a memory
zone next to the native array contains a pointer to the communication buffer
used for Host Controller Protocol (HCP) communications. The HCP
protocol handles the transport layer of the Single Wire Protocol (SWP)
protocol, involved in Near Field Communication (NFC) communications
with smart cards. HCP messages encapsulates ISO7816 Application
Protocol Data Unit (APDU) that are conveyed to the smart card over
SWP.

   Using the overflow on the native array, we are able to use the HCP
communication buffer pointer as native function pointer. The execution of this
native function pointer leads to executing the content of the HCP
communication buffer as a native assembly function.

   The HCP protocol has several properties that limit the use of the HCP
communication buffer as a native payload injection placeholder:


   

   	HCP packets are prefixed with a HCP message header and an HCP
   packet  header.  These  headers  are  interpreted  as  native  assembly
   opcodes.
   

   	HCP enforces fragmentation of messages, which limits packets size
   to 27 bytes. The entire native payload must thus be contained in 27
                                                                  
                                                                  
   bytes.
   


   In order to gain more space to inject our attack payload, we inject a
minimal payload in the HCP communication buffer whose only purpose
is to redirect the execution flow to the ISO7816 APDU buffer. This
minimal redirection payload is presented in Table 1. Because the HCP
communication buffer pointer is used as a function pointer, all the HCP buffer
is interpreted as native code, including packet header, message header
and encapsulated APDU header. These header bytes produce no side
effect as shown in Table 1, which lets the redirection payload execute
properly.


   
                                                                  
                                                                  
   


                                                                  
                                                                  
 	
	
	
	
	

	HCP message
	Interpretation
	    Native code
   	     Comment


	
	
	
	
	

	               	Packet header   	     	             	                     
	82 50 	Message header 	STR 	r2, [r0, r2]	No side effect

	
	
	
	
	

	00 10          	CLA/INS       	ASRS	r0, r0, #0  	No side effect             

	
	
	
	
	

	00 00          	P1/P2         	MOVS	r0, r0      	No side effect             

	
	
	
	
	

	14 00          	Lc/padding    	MOVS	r4, r2      	No side effect             

	
	
	
	
	

	E9 2D 5F FC    	Data          	PUSH	{r2-r12, lr}	                     

	
	
	
	
	

	F6 4A 54 D0    	               	MOVW	r4, #0xADD0 	                     

	
	
	
	
	

	F6 CA 54 D1    	               	MOVT	r4, #0xADD1 	r4 = &apduBuffer    

	
	
	
	
	

	47 A0          	               	BLX 	r4          	branch to apduBuffer

	
	
	
	
	

	E8 BD 9F FC    	               	POP 	{r2-r12, pc}	                     

	
	
	
	
	

	               




 Table 1: Native payload in the HCP buffer that redirects the execution
flow to the APDU buffer. Relevant payload data is grayed out.

                                                                  
                                                                  
   


   

   The ISO7816 protocol has broaden fragmentation constraints, which offers
sufficient space for a full native payload injection. We present in Table 2 a
full payload injected in the APDU buffer that branches to a low level
read/write OS function. Because the start address execution is chosen
from the HCP message buffer payload, the header bytes are skipped
and the native execution starts at the push instruction (Table 2, 3rd
row).


   
                                                                  
                                                                  
   


                                                                  
                                                                  
  	
		
	
	
	
	

		        APDU
       	     Native code
     	        Comment


	
		
	
	
	
	

	 1	00 12 00 00 31	Header	     	                	CLA/INS/P1/P2/Lc          

	
		
	
	
	
	

	 2	 B1 FA 15 00   	 Data  	     	                	source reading address    

	
		
	
	
	
	

	 3	 2D E9 FF 5F   	       	PUSH	{r0-r12, lr}   	                          

	
		
	
	
	
	

	 4	 F6 4A 56 D0   	       	MOVW	r6, #0xADD0    	                          

	
		
	
	
	
	

	 5	 F6 CA 56 D1   	       	MOVT	r6, #0xADD1    	r6 = apduBuffer           

	
		
	
	
	
	

	 6	 35 68         	       	LDR 	r5, [r6,#0x00] 	r5 = *apduBuffer          

	
		
	
	
	
	

	 7	 28 46         	       	MOV 	r0, r5         	                          

	

		
	
	
	
	

	 8	 00 F1 09 00   	       	ADD 	r0, r0, #0x6A  	 *dest: apduBuffer + 0x6A 

	

		
	
	
	
	

	 9	 D5 F8 05 10   	       	LDR 	r1, [r5, #0x08]	 *src: *(apduBuffer + 8)  

	

		
	
	
	
	

	10	 4F F0 40 02   	       	MOV 	r2, #0x40      	length: 0x40              

	

		
	
	
	
	

	11	 F6 4A 54 D2   	       	MOVW	r4, #0xADD2    	                          

	

		
	
	
	
	

	12	 F6 CA 54 D3   	       	MOVT	r4, #0xADD3    	 r4 = *read_function_ptr()

	

		
	
	
	
	

	13	 A0 47         	       	BLX 	r4             	call method               

	

		
	
	
	
	

	14	 BD E8 FF 9F   	       	POP 	{r0-r12, pc}   	                          

	

		
	
	
	
	

	   




 Table 2: Native payload in the ISO7816 APDU buffer that calls an OS
function to read an arbitrary memory zone and copy the result to the
APDU buffer. Relevant payload data is grayed out.

                                                                  
                                                                  
   


   

   The payload initializes the source parameter to the first 4 bytes of the
payload (Table 2, 2nd row), such that the reading address can be selected
directly in the APDU. Then, it initializes the destination address (where the
read bytes are copied) to the address of the APDU buffer following
the payload, such that the read bytes are immediately available for
sending back through the APDU buffer. Finally, it branches to the low
level OS function that performs the reading operation. As a result,
any physical address of the card can be accessed through this native
payload.
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Fig. 7:  Exploitation of the native array overflow to execute native code
in the APDU buffer.

                                                                  
                                                                  
   


   Figure 7 shows the execution flow from the native array overflow to the
redirection payload in the HCP message buffer to the final attack payload in
the APDU buffer. We were able to integrally dump the card memory and to
reverse it using commercial reversing tools. The reversed code was identified as
the code of the embedded JCVM.


   4    Other Experimental Results

To evaluate the consequence of the BCV flaw on a broader range of virtual
machine implementations, we tested, on different smart cards from different
manufacturers, how much each of them supports the installation of an
ill-formed applet. We evaluated seven cards from three distinct manufacturers
(a, b and c). Each card name is associated with the manufacturer reference
and its Java Card specification  [30]. The list of evaluated Java Card smart
cards is presented in table 3.


   
                                                                  
                                                                  
   


                                                                  
                                                                  
 	
	
	
	

	          	Java Card
	GlobalPlatform
	                           
	Reference
	 Platform
	 Version
	 Details


	
	
	
	

	
	
	
	

	   a-22a   	   2.2.1     	      2.1.1         	36 kB EEPROM, RSA           

	
	
	
	

	   a-22b   	   2.2.2     	      2.1.2         	80 kB EEPROM, RSA           

	
	
	
	

	   a-30c   	   3.0.4     	      2.2.1         	80 kB EEPROM, ePassport    

	
	
	
	

	   b-30a   	   3.0.1     	      2.2.1         	1 MB Flash memory, (U)SIM  

	
	
	
	

	   c-21a   	   2.1.1     	      2.0.1         	128 kB EEPROM, SIM          

	
	
	
	

	   c-21b   	   2.1.1     	      2.0.1         	64 kB EEPROM, RSA, AES   

	
	
	
	

	   c-22c   	   2.2.2     	      2.2.2         	256 kB Flash memory, (U)SIM

	
	
	
	

	          




 Table 3: Cards evaluated during this experimentation.

                                                                  
                                                                  
   


   

   None of the evaluated card embeds an embedded BCV. On each card, an
ill-formed applet can be installed and, if the installation succeeds, the applet is
executed. The ill-formed applet has a dereferenced method in the public
virtual methods table. Table 4 sums up the cards reactions.


   
                                                                  
                                                                  
   


                                                                  
                                                                  
 	
	
	

	Ref.
 	                            Statut
                         	  
	
	
	

	
	
	

	a-22a	PCSC error: card mute. 	 
✗ 

	
	
	

	a-22b	PCSC error: card mute.                                                                	 ✗ 

	
	
	

	a-30c	PCSC error: card mute.                                                                	 ✗ 

	
	
	

	b-30a	No error: the card return the value 0x0701.                                       	 ✗ 

	
	
	

	c-21a	Global platform error: error during the loading process (applet rejected).	✓ 

	
	
	

	c-21b	Global platform error: error during the loading process (applet rejected).	✓ 

	
	
	

	c-22c	Global platform error: error during the loading process (applet rejected).	✓ 

	
	
	

	      




 Table 4: Statuts of each evaluated cards.

                                                                  
                                                                  
   


   

   As shown in table 4, cards react differently to the ill-formed CAP
file installation and execution. The cards with the symbol (✓) detect
the ill-formed CAP file during the installation and reject it. On the
other cards, marked with the symbol (✗), installation and execution
succeed.

   Successful executions cause either unexpected card response or card mute.
Unexpected card response indicates that unexpected code execution occurred.
Card mute may result from infinite loop or card’s reaction to illegal code,
which also indicates unexpected code execution.

   These behaviors proof that the control flow of the JCVM is modified. We
can thus conclude that the BCV flaw presented in this article can be exploited
on a range of different Java Card smart cards.

   The full attack path that results in arbitrary native code execution requires
information about the memory mapping and the JCVM implementation that
were not available for these tests. Therefore, we did not attempt to reproduce
the full attack path.


   4.1    Characterizing the Control Flow Transfer

The attack presented in section 2.5 exploits an overflow that occurs during
the linking process and forces the program counter to an incorrect value
during execution. As a result, the control flow is transferred to an incorrect
memory zone. The exploitation of the full attack path requires knowning
where the control flow is transferred thus we designed a characterization
process that allows an attacker determining the jump target location resulting
from the offset overflow.

   During the linking process, the offset of the method to resolve is sought in
the public_virtual_method_table of a class_info element in the Class
component of the CAP file. When an attacker deletes the required offset in the
CAP file, the offset is taken in overflow in the next memory bytes. As
the attacker can delete as many offsets as there are methods in the
CAP file, several bytes of overflow memory can be used as method
offset.

   To characterize the control flow resulting from an unknown offset we
design a method that can be executed from any point, regardless of where the
erroneous control flow has jumped. To reach this goal, each element of the
method should be interpretable both as a method header and a Java Card
                                                                  
                                                                  
instruction. If the overflow offset does not jump in the characterization
method, another offset is deleted in the CAP file and thus the next bytes in
memory are used as offset. The process is repeated until the jump target place
is located in the characterization method. Because offset are signed values, the
Method component can be located in memory either before or after the Class
component.


   Constraints of a Java Card Method

From the Java Card specification  [30], we extracted the constraints which
define a valid Java Card method.

   A Java Card method is composed of two elements, a header and a set of
instructions which form the method’s bytecode. According to the Java Card
specification, the header is a structure defined as a method_header_info or
an extended_method_header_info. The Listing 1.1 shows those structures,
where the type u1 defines an unsigned byte (8-bit length) and the type
bit[4], a 4-bit item.


   


method_header_info {           extended_method_header_info { 
  u1 bitfield {                  u1 bitfield { 
    bit[4] flags                   bit[4] flags 
    bit[4] max_stack               bit[4] padding 
  }                              } 
  u1 bitfield {                  u1 max_stack 
    bit[4] nargs                 u1 nargs 
    bit[4] max_locals            u1 max_locals 
  } 
}                              }


    Listing 1.1:
    Java
    Card
    method
    defines
    from
    the
    JCVM
    specification.

   

   As presented in the Listing 1.1, a method header is defined by the
following elements:


   
   	The flags item is a mask of modifiers which define this method –
                                                                  
                                                                  
   standard, extended or abstract method. The native method is not
   supported by the JCVM specification  [30].
   

   	The  max_stack item  indicates  the  maximum  number  of  words
   required on the operand stack during execution of this method.
   

   	The nargs item represents the number of words required to represent
   the parameters passed to the method.
   

   	The  max_local item  indicates  the  number  of  words  required  to
   represent  the  local  variables  declared  by  this  method  without  the
   method parameters.
   


   The method instructions are composed of opcodes, encoded on 1 byte, and
a set of 1-byte arguments. The valid opcode values are comprised between
0x00 (NOP) and 0xB8 (putfield_i_this). Values between 0xB9 and 0xFD
are reserved for future use and cannot be used in compliant JCVM
implementations. The opcode values 0xFE and 0xFF are intended to provide
back doors or traps to implementation-specific functionality implemented in
software and hardware, respectively  [30].

   We extracted and factorized all method constraints defined by
the JCVM specification, and we obtained the model shown in the
Listing 1.2.


   


method = header & bytecodes 
 
header = method_header_info | extended_method_header_info 
method_header_info = { 
  // method_header_info has a 4-bit element. 
  flags     = {0x0, 0x4}, // 0x0: a  standard method 
                          // 0x4: an abstract method 
  max_stack = [0x0, 0xF], 
  narg      = [0x1, 0xF] // [0x0, 0xF] for static method 
  max_local = [0x0, 0xF] 
} 
extended_method_header_info = { 
  // extended_method_header_info has a 1-byte element 
  flags     = {0x8, 0xC},// 0x8: an extended method 
                         // 0xC: an extended abstract method 
  padding   = 0x0, 
  max_stack = [0x00, 0xFF], 
  nags      = [0x01, 0xFF], // [0x00, 0xFF] for static method 
  max_local = [0x00, 0xFF], 
} 
 
if (flags & EXTENDED_METHOD) // Is it an extended method? 
  bytecodes = {} // empty set 
else 
  bytecodes = instruction+ // + = one or more 
 
instruction = opcode & (argument)* // * = zero or more 
opcode   = [0x00, 0xB8] // Reserved values from 0xB9 to 0xFF 
argument = [0x00, 0xFF]


    Listing 1.2:
    Constraints
    which
    define
    a
    Java
    Card
    method.

   

                                                                  
                                                                  
   Solving the Constraints

As the attacker cannot control the resolution of the invokevirtual
instruction offset resulting from the overflow in the Class component, our
characterization method aims at implementing a method which can be
executed from any point. In this method, each byte can be interpreted as
method header, an opcode or an argument. Indeed, as the Class component is
generally located before the Method component in the card, an overflow
from the Class component may reach the first method in the Method
component.

   Since the method constraints have been extracted from the Java Card
specification, we look for a set of bytes which is a solution to these
constraints.


   Design of a polymorphic method

From the method constraints defined in the Listing 1.2, we designed a method
which can be executed from any point. To make each byte of the method
interpretable as a valid execution entry point, they should be compliant with
the following rules:


   
   	Constraints     on     method_header_info   ∪   constraints     on
   extended_method_header_info
   

   	with:
      
      	Constraints  on  method_header_info =  [0x01,  0x0F]  ∪ [0x11,
      0xFF];
      

      	Constraints on extended_method_header_info = [0x80] ∪ [0x01,
      0xFF].
      


   


   After minimizing the constraints, the following rule can we obtained:


                                                                  
                                                                  



∀ bytecode ∈ {[0x01, 0x0F] ∪ [0x11, 0xFF]}


   To optimize the byte range value, we decided to exploit the exception
mechanism. Indeed, the exception mechanism allows redirecting the execution
flow to a finite set of handlers (exception handlers) from any point in the
execution flow, which is the desirable behaviour for our polymorphic
method.

   The Listing 1.3 shows a java program implementing a set of exceptions
thrown in the try-statement and caught in the appropriate catch-statement.


   


public void characterizedMethod(void) { 
  try { 
    // throw an exception(); 
    // throw an exception(); 
    // etc., several times 
  } catch (NullPointerException npe)  { 
    // Payload 1 
  } catch (SecurityException se)      { 
    // Payload 2 
  } catch (Exception e)               { 
    // Payload 3 
  } 
}


    Listing 1.3:
    A
    Java
    Card
    method
    which
    throws
    and
    catches
    exceptions.

   

   The function listed in the Listing 1.3 is compiled to the bytecode sequence
shown in the Listing 1.4.


   


public void characterizedMethod(void) { 
  01 // flag: 0 max_stack: 1 
  01 // narg: 0 max_local: 1 
  01       sconst_null 
  93       athrow 
  60 01    ifeq 01 
  01       sconst_null 
  93       athrow  // throw the exception. 
  ... 
  // Catches area 
  ... 
  7A       return // This bytecode is never reached. 
}


    Listing 1.4:
    A
    valid
    method
    bytecode
                                                                  
                                                                  
    which
    can
    be
    executed
    from
    any
    point.

   

   In this bytecode sequence, the pattern 01 01 93 60 is repeated.
Depending on the starting point in this sequence, different bytecode patterns
can be ran. The Table 5 lists each pattern possibilities and the resulting
exception thrown.


   
                                                                  
                                                                  
   


                                                                  
                                                                  
 	
	
	

	    Sequence
    	  Remark   	     Exception       

	
	
	

	
	
	

	01 01 93 60      	            	NullPointerException

	
	
	

	01 93 60         	 Empty stack 	  SecurityException  

	
	
	

	93 60 01 01 93 60	Invalid header	  SecurityException  

	
	
	

	60 01 01 93 60   	Invalid header	  SecurityException  

	
	
	

	                 




 Table 5: Executed sequences and exceptions thrown.

                                                                  
                                                                  
   


   

   The two last sequences, 93 60 01 01 93 60 and 60 01 01 93 60, have
an invalid header. Leading 9 and 6 nibbles cannot be valid header flags
value according the Java Card specifications. However, several JCVM
implementations use a binary masks on the method headers to retrieve the
relevant method’s flags. Therefore, in this case the flag 9 may be interpreted
as an extended method, and the flag 6 as an extended abstract method.
According to the Java Card specification, for security reasons, the Java Card
runtime environment implementation may also mute the card instead of
throwing a SecurityException  [29].

   Finally, the attack payload is placed in the exception handlers. Thus, when
an exception is thrown the execution flow is directed to the attack payload
regardless of the execution starting point.

   The approach introduced in this section aims at characterizing the effect of
the overflow on the public_virtual_method_table field. For that purpose,
we developed a polymorphic method which can be executed from any point.
This polymorphic method, based on the java exception mechanism, transfers
the execution flow to the exception handlers where the attack payload is
located.


   5    Conclusion, Countermeasure and Future Works

We show in this article how a missing check in the Oracle’s BCV implementation
can be exploited on a Java Card. This flaw was disclosed by an evolutionary
fuzzer. We demonstrated that this BCV issue has a critical impact on smart
cards security through a proof of concept exploitation on a JCVM
implementation. We have successfully managed to inject and execute native
code in a communication buffer, and finally gain full read/write OS
privileges on the whole card memory. Finally, we evaluated on a range of
different cards from different manufacturers that most of the JCVM
implementations do not protect themselves against the BCV issue
exploitation. As we evaluated cards in black box model, we faced the problem
of characterizing the control flow transfer. To resolve this issue, we designed a
polymorphic java method using method constraints. This method is
semantically correct, regardless of the execution starting point, and
redirects the execution flow to a single point where the attack payload is
located.

   Following our responsible disclosure of the BCV issue to Oracle, we
                                                                  
                                                                  
were allowed to publish this article and a new version of the BCV was
released3 .
This new BCV version detects the Class component inconsistency and thus
mitigate our attack. A loading process including mandatory bytecode
verification step with the latest Oracle’s BCV provides a valid countermeasure
against the attack presented in this paper.

   With the identification of a new flaw in the Oracle’s BCV implementation,
one sees that the BCV must be entirely verified to lower the risks of new
vulnerabilities disclosure. To reach this objective, an effort should be done to
specify the security and functional requirements a BCV must comply
with in order to protect JCVM implementations against this software
attack.
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