

 Table des matières

 1 Introduction

 2 Theoretical foundations

 3 Implementation

 4 Discussion and results

 5 Conclusion

Picon : Control Flow Integrity on LLVM IR

Thomas Coudray, Arnaud Fontaine1 et Pierre Chiier1

{pierre.chifflier,arnaud.fontaine}@ssi.gouv.fr

thomas.coudray.fr@gmail.com

1 Agence Nationale de la Sécurité des Systèmes d'Information

 Résumé Control ow integrity is a well explored eld of software
 security for more than a decade. However, most of the proposed
 approaches are stalled in a proof of concept state when the
 implementation is publicly available or have been designed with
 minimal performance overhead as main objective, sacricing security.
 Currently, none of the proposed approaches can be used to fully
 protect real-world programs compiled with most common compilers
 (e.g. GCC, Clang/LLVM). In this paper we describe a control ow
 integrity enforcement mechanism for LLVM IR, called Picon, whose
 main objective is security. Our approach is based on compile-time code
 instrumentation, making the program communicate with its external
 execution monitor. The program is terminated by the monitor as
 soon as a control ow integrity violation is detected. Our approach is
 implemented as an LLVM plugin and is working on LLVM's Intermediate
 Representation.

 1 Introduction

Traditional program exploitation by an attacker often involves bypassing the
size of a buer to write to an arbitrary address in memory, and then
redirecting execution to the code newly written to this address. This
has lead to the introduction of protections to prevent these problems.
Stack canaries [10] add random values between frames in the call
stack, to detect stack overows, and equivalent protections exist to
prevent heap overows. Data Execution Prevention (DEP) [2] adds a

separation between data, which can be read or written, and code, which
should be executable and never written. It can be enforced by the
hardware, e.g. NX (No-eXecute) bit on x86, XN (eXecute-Never) on
ARM.

 The generalization of these protections, now widely used in modern
operating systems, has changed the typical form of exploits to work around
them. In addition, the separation between code and data in W X is not so
clear in real programs : some data are interpreted not directly as code, but as
an indirect way of executing code. This is the case of the return address,
which species the address of the instruction to be executed when returning
from a function. This address, if modied, can be used by an attacker to
execute some existing code in the application, leading to code-reuse
attacks.

 The initial attack vector has to be provided by the attacker, usually in a
data buer. Even when these data are not directly executable, the attacker
can specify a sequence of return addresses, each of them pointing to
some instructions followed by a return. By choosing the eect of these
instructions, the executed code can be controlled by the attacker. This
technique is known as Return-Oriented Programming, or ROP [21]
and has been proved Turing-complete using a set of gadgets from the
standard GNU C library. Other techniques involve code-reuse such as
Jump-Oriented Programming [6] which removes the reliance to the stack and
the return instruction. String Oriented Programming (SOP) [20] and Signal
Return Oriented Programming (SROP) [8] are also based on the same
principle.

 To protect the execution of a program against code-reuse attacks, a
common technique is to randomize the memory layout of a program on every
program execution, using Address Space Layout Randomization (ASLR). This
way, memory addresses change at each program execution and are harder to
predict. While powerful, this technique is not sucient, mostly because
addresses of some parts of the program may leak or be guessed, but also
because of remaining problems like format-string vulnerabilities [17]. Because
randomization is done for entire sections at once, the discovery of one address
often means defeating the entire randomization. In some other cases,
brute-force techniques or blind-ROP [4] can be used to detect the
small parts of code preceding a return, also known as gadgets (ROP
Widgets).

 To protect the execution ow of a program, other techniques must be used
in addition to existing protections, such as control ow integrity.

1.1 Control ow integrity

Program exploitation often subverts the intended data ow in a vulnerable
program. This in turns makes it possible to hijack the control ow in order to
control the program behaviour. Control Flow Integrity (CFI) provides a
protection against control ow hijacking attacks. The CFI property was
formalized by Abadi et al. in 2005 [1]. In this paper, CFI is used to enforce
the program execution to follow only paths existing in the Control Flow
Graph (CFG), obtained using static analysis of the binary. Then, the binary is
rewritten to add checkpoints before branch instructions, along with tags to
check that the target is in accord with the predicted/expected control
ow.

 One of the dicult parts of CFI is the extraction of the control ow graph.
It can be recovered statically on the source code [28], on the binary le (using
structural analysis with tools like Hex-Rays decompiler, for example), or
dynamically (e.g. execution proling [27]). Some of these reconstructions may
be incomplete, when a branch cannot be predicted precisely, or when the
analyzed form does not match the code actually produced by the compiler
(modied by some optimizations).

 A rst way to classify control ow integrity methods is based on the type of
input program : some of them work on the original sources [13, 15, 26], while
some others work on the assembly, or binary form of the program [1, 7, 29].
Working at the source code level allows one to extract a precise control ow
graph, and more information about the program. On the other hand, working
at the binary level allows one to protect programs without requiring
the source code, but is architecture-dependent and inherently less
precise.

 The second classication method is based on the type of component
responsible for enforcing the security policy, called an Execution Monitor.
The enforcement of security policies by monitoring executions was
formalized by Schneider in 2000 [24], with the denition of safety
properties, later extended by Basin et al. [3]. An execution monitor can be
internal or external to the protected program. It can also have a dierent
granularity depending on the enforcement policy mechanism used. An
execution monitor must be tamper-proof to ensure control ow integrity,
and have the ability to terminate the process in case the policy is not
respected.

 An inlined execution monitor integrates the verication code into the
program code during compilation or via binary rewriting. An inline monitor
shares the same address space as the monitored program, and the verication

code has to be protected in the binary itself.

 An execution monitor can also be externalized, i.e. be moved out of the
program. In this case, the monitor observes the program execution, and
checks that the expected control ow of the program is respected. On one
hand, this approach is more secure than an inlined monitor as the monitor as
its own logic, independent from the monitored program. It can be
implemented in dierent locations : it can be a user process, a kernel module,
an hypervisor, etc. The more hardened the monitor is, the harder it will be for
an attacker to compromise the binary protected using CFI. On the other
hand, since the monitor must be able to observe quite precisely the execution
ow of some program, and to kill it in case an unexpected execution ow is
detected, an external monitor is a very sensitive process. Actually, some
additional care must thus be taken to ensure the monitor itself cannot be
subverted and/or compromised. Depending on how the execution ow of the
monitored program is concretely observed by the monitor, the runtime cost of
the external approach is by denition more costly than the integrated/inlined
one.

 The main advantage of using an external monitor is to globally
improve the security oered by a CFI protection : an attacker needs to
control both the program and its monitor to successfully exploit a
vulnerability.

1.2 Limitations of current approaches

Most implementations of control ow integrity make trade-os between
security and performance. This implies removing some of the checkpoints, for
example by not instrumenting function calls, and only taking care of return
instructions.

 However, removing protections leaves the protected program vulnerable to
attacks, because some gadgets are still available for an attacker. As shown
in [12] and [11], most control ow integrity implementations have been tested
and demonstrated to be quite permissive in still allowing an attacker to build
ROP attacks.

 Other techniques, like forward-edge CFI [26], or control ow guard [5, 13]
as implemented recently in Windows, only protect indirect forward calls, and
thus only provide partial protection.

 Another technique, called control ow locking, was introduced
in [7] to mitigate these attacks. The method relies on a lock that is set
before any control ow change, and that the next instrumented point

will verify some predened condition before unlock it and permit the
execution to continue. However, this work was limited to statically linked
binaries.

Unaligned ROP gadgets

Many of the ROP gadgets found in binaries consist of unaligned instructions
that have not been produced by the compiler, but that happen to be
interpretable as valid instructions by the processor. This mainly concerns the
x86 architecture, due to the number and the repartition of possible opcodes,
and the fact that instructions are not required to be aligned on this
architecture. This limitation is also shared by most implementations of CFI on
these architectures.

 It is possible, however, to analyze the instructions from the binary le, and
apply translations or randomization of instructions, and insertion of neutral
instructions automatically, to ensure that the unaligned gadgets are replaced
by other sequences, as described in [18].

 However, even when the unaligned gadgets are removed from a binary,
some gadgets still remains, because of the control ow, especially the function
returns. As a complement of the elimination of unaligned gadgets, the
program still needs to be protected so that an attacker will not be able to use
any of the two kinds of gadgets.

1.3 Control ow integrity on LLVM IR

In this paper, we present a practical approach to control ow integrity, with
some similarities to control ow locking, but with dierent properties.

 Our work has several key properties :

 	external monitor : while the communication with the monitor
 reduces performances, the isolation increases the protection ;

 	complete : the protection is not partial, and not limited to a few
 points (e.g. function returns) ;

 	automatic : the protection must be automatic, well-integrated
 with existing build tools, and not be a burden for the developer ;

 	portable : the protection works on dierent architectures, and

 does not rely on a disassembly of specic binaries ;

 	support of shared libraries : the protection supports programs
 that are linked with shared libraries, and this does not break the
 chain of verications.

 This paper is organized as follows. In Section 2, we describe a
formalization of our model of control ow integrity on LLVM IR, based on a
pushdown automaton. In Section 3, we describe an implementation of the
proposed model, called Picon, as a plugin for the LLVM compiler, and a
separate process for the execution monitor. In Section 4, we analyze
the security impact on binaries protected by Picon, and discuss the
results.

2 Theoretical foundations

The goal of this section is to formalize our model of control ow integrity on
LLVM IR, and to show that it can enforce strong protection against most
common attack patterns. One of the main advantages of this model is to
permit easier debugging and a posteriori analysis of a program execution
whose control ow integrity has been compromised. The last part of this
section shows how to tackle a forthcoming implementation issue of the model,
with identical security guarantees and reasonable debugging and a posteriori
analysis features.

2.1 Control ow integrity model

Roughly, the control ow integrity model proposed is based on an execution
monitor [24] whose goal is to enforce a security policy described by a
pushdown automaton (i.e. a state machine equipped with a stack). In order to
formally dene the control ow integrity policy enforced, some notations and
denitions need to be introduced.

 First of all, the class of programs considered needs to be dened. Basically,
a program is a set of functions, one of which is the single entrypoint of the
program, i.e. the main function.

Denition 1 (Program). A program P is dened as a pair (F;fP)

where F is a nite non-empty set of functions dened and/or called in P
(directly or transitively) and fP 2F is the function corresponding to the
main and unique entrypoint of the program.

 In LLVM IR, a function is a set of basic blocks, each of which
is a sequence of LLVM IR instructions. Only a very small subset of
these instructions has to be considered to enforce control ow integrity
property. Actually, it is useless to modelize the behaviour of instructions
that cannot alter the control ow execution such as arithmetic/logic
operations. Only instructions that inuence the control ow are thus
modelized. To keep the model as simple as possible, LLVM IR instructions
with equivalent semantic according to the control ow denition are
grouped and an abstract instruction is introduced to represent each
group.

Denition 2 (Basic block). A basic block in LLVM IR is a nite
non-empty sequence of instructions. Among the set of all possible
LLVM IR instructions, only the four following abstract instructions are
considered : call, ret, unreachable and branch.

 A call instruction interrupts the execution of its enclosing basic block
to execute some function, and so recursively. It corresponds to the LLVM
instructions call and invoke.

 A ret instruction can only occur as the last instruction of a basic
block. Its execution stops denitively the execution of the current function
(and thus of its enclosing basic block), and the execution restarts with the
instruction immediately following the last executed call instruction. The
LLVM corresponding instructions are ret and resume.

 A branch instruction targets a nite non-empty set of basic blocks. Its
execution selects one of the targeted blocks as the next one to be executed
based on some condition. If only one basic block is targeted, the branch
is unconditional to the single targeted block. It corresponds to the LLVM
instructions br, indirectbr, and switch.

 A unreachable instruction is a special instruction to indicate an
unreachable statement and its execution is equivalent to a do nothing.
It corresponds to the LLVM instruction unreachable.

 The last instruction of a basic block is systematically a ret, a branch
or a unreachable instruction.

 The organization of basic blocks within a function is constrained in LLVM
IR. Each function has a single entry block which has no predecessors (i.e. it is
not possible to jump on the entry block from within the function).
Basic blocks with no successors are terminated by a ret instruction,
when the function returns to its caller, or a unreachable instruction
which is a special LLVM IR instruction to indicate an unreachable
statement.

Denition 3 (Control ow graph (CFG) of a function). The
control ow graph of a function f is a directed graph Gf = (V f;Ef)
where V f is a nite non-empty set of vertices consisting in the set of basic
blocks of f, and Ef V f V f is a nite set of edges. An edge (b1;b2)
exists in Ef i the basic block b1 ends with a branch instruction targeting
a set of basic blocks containing b2.

 The main and unique entry of a function f is a basic block b 2 V f
denoted entry(f) such that 8b 2 V f (b;b0) 2 Ef[image: =)]b06= entry(f).

 The nite set exit(f) V f denotes the set of basic blocks with
no successors and terminated by a ret instruction. The nite set
unreachable(f) V f denotes the set of basic blocks with no successors
and terminated by a unreachable instruction. There exists no basic block
b 2 V f n (exit(f) [unreachable(f)) containing an instruction ret or
unreachable, or without successors.

 Interactions between functions dened and called/used in the program
must be dened. These interactions have to be completely and statically
known at the model level in order to enforce a control ow integrity property.
This assumption may seem strong, but any missing interaction will be
detected as a control ow integrity violation, so that integrity is not
compromised.

Denition 4 (Call graph of a program). Let P = (F;fP) be a
program. The call graph of P is a directed graph GP = (V P;EP;BP)
where V P = F is its set of vertices, EP V P V P is its set of edges,
and BP is its edge labeling function.

 An edge (f;g) 2 EP denotes that function f is calling function g. This
edge is attached a label denoted BP(f;g) V f consisting in the subset of
basic blocks of f in which g is called, with Gf = (V f;Ef) the CFG of f.

 Some sequences of instructions have to be inserted in the program either to
report an upcoming execution ow change to an external entity able to kill the
program, or to enforce the control ow policy directly within the program
which will terminates if compromised. At the model level, both alternatives
are equivalent. Each kind of sequence to be inserted is called a hook, and
insertion of these hooks is called instrumentation. The instrumentation step is
crucial for later denition of control ow integrity policy enforcement since a
control ow integrity violation will be detectable only where a hook is
inserted.

 Roughly, a hook is inserted before any bifurcation of execution ow occurs,
that is just before call instructions with a hook called cfiCall, ret and
unreachable instructions with a hook called cfiExit, and branch
instructions with a hook called cfiBeforeJump. Although it is required to
control before the execution ow is modied, it is also important to insert
some control after the execution ow is modied, that is at the entry of a
function with a hook called cfiEnter, at the entry of a basic block with a
hook called cfiAfterJump, and at the return of function calls with a hook
called cfiReturned.

Denition 5 (Program instrumentation). An instrumented program is
a program P = (F;fP), denoted P, verifying all the following properties for
each function f 2F and each basic block b 2 V f appearing in its CFG
Gf = (V f;Ef) :

 	each call instruction to a function f0 2 F in b is immediately
 preceded by the sequence of instructions corresponding to the
 cfiCall f0 hook, and immediately followed by the sequence of
 instructions corresponding to the cfiReturned f0 hook ;

 	if b 2 exit(f) [unreachable(f) then the last instruction of the
 block is immediately preceded by the sequence of instructions
 corresponding to cfiExit f hook, otherwise b ends with a branch
 instruction immediately preceded by the sequence of instructions
 corresponding to cfiBeforeJump (f;b) hook ;

 	if b = entry(f) then b starts with the sequence of
 instructions corresponding to the cfiEnter f hook, otherwise
 b starts with the sequence of instructions corresponding to the
 cfiAfterJump (f;b).

 An instrumented program contains sucient hooks to protect its control
ow integrity.

Denition 6 (Control ow integrity policy). Let P = (F;fP) be an
instrumented program and GP = (V P;EP;BP) its call graph. The control ow
integrity policy for program P is described by a deterministic pushdown
automaton M = (Q;;;;q0;Z0;F) where Q = fqe;qc;qr;qbg is its set of
states, = fcfiCall f;cfiEnter f;cfiExit f;cfiReturned f∣f 2
V Pg[fcfiBeforeJump (f;b);cfiAfterJump (f;b)∣f 2 V P;b 2 V fg is its set
of inputs, = fhf;i∣f 2 V P; 2 V fg is its nite set of stack symbols,
q0 = qc is its initial state, Z0 = hfP;entry(fP)i is its initial stack symbol,
F = fqeg is its set of accepting states, and 2 (Q) ! }(Q) is its
transition function such that 	[image: 0
(qe;cfiCa(ll f ;hf;b i) =
 f(qc;hf0;entry(f0)ihf;b i) j (f;f0) 2 EP g i b 2 BP (f;f 0)

 ; otherwise
]	
(1)

	[image: (qr;cfiReturned f0;hf;b i) =
 (
 f(qe;hf;b i) j (f;f0) 2 EP g i b 2 BP (f;f 0)
 ; otherwise
]	
(2)

 	(qe;cfiExit f;hf;bi) 	 = [image: (
 f(qr;)g i b 2 exit(f)
 ; otherwise] 	(3)

	(qc;cfiEnter f;hf;bi) 	 = [image: (
 f(qe;hf;b i)g i b = entry(f)
 ; otherwise] 	
(4)

	(qe;cfiBeforeJump (f;b);hf;bi) 	 = f(qb;hf;bi)g 	(5)

	(qb;cfiAfterJump (f;b0);hf;bi) 	 = f(qe;hf;b0bi)∣(b;b0) 2 Efg 	(6)

 where Gf = (V f;Ef) is the CFG of f and denotes an empty
sequence.

 An instantaneous description of M is a triple (q;!;) 2 Q
describing a situation of M where q is a state of the automaton, ! is a
sequence of inputs to treat, and is a stack.

 When no transition exists in the automaton for a given input according to
its current state and stack, it indicates that the control ow integrity of the
program has been compromised. As a consequence, the compromised program
must be immediately terminated.

Proposition 1 (Detection of compromised CFI). If the control
ow integrity of an instrumented program P is compromised while it is
protected by the control ow integrity policy given in Denition 6, then
P is terminated at the rst hook encountered in the resulting execution

ow or by the end of P itself.

Démonstration. Let P = (F;fP) be an instrumented program and M =
(Q;;;;q0;Z0;F) the automaton describing the control ow integrity
policy enforced on P. Let (q;!;) be the instantaneous description of M
just after the exploited instruction i in basic block b of f is executed.

 By denition, instruction i can only be a call, a ret, a branch or
a unreachable instruction as only those instructions can inuence the
control ow.

 If i is a call, then it is immediately preceded by a cfiCall f0 hook.
So, according to the denition of the transition function , the only
valid values for q and are qc and hf0;entry(f0)i, respectively. From
this instantaneous description, the only valid next input is cfiEnter f0,
which can be emitted only when f0 is called, by denition.

 If i is a branch, then it is immediately preceded by a
cfiBeforeJump (f;b) hook. So, according to the denition of the
transition function , the only valid values for q and are qb and hf;bi,
respectively. From this instantaneous description, the only valid next
input is cfiAfterJump (f;b0) with (b;b0) 2 Ef, which can be emitted
only by jumping on an expected basic block, by denition.

 If i is a ret, then it is immediately preceded by a cfiExit f
hook. So, according to the denition of the transition function , and
because b 2 exit(f) by denition, the only valid values for q and
 are qr and hf0;b0i, respectively, where (f0;f) 2 EP and b0 2
BP(f0;f). From this instantaneous description, the only valid next input
is cfiReturned (f;b0), which can be emitted only after returning from a
call to f occurring in basic block b0 of f0, by denition.

 If i is a unreachable, then it is immediately preceded by a cfiExit f
hook. Since b 62 exit(f), there exists no denition of this transition in
. So this instantaneous description does not exist as the unreachable
instruction cannot have been executed.

 When a violation of the control ow integrity policy occurs, the stack of
the monitor contains the call stack trace, i.e. function calls and basic blocks
trace for each function called. This information is crucial for debugging
purposes but also for a posteriori analysis of compromised program execution.

However, dened as is, the sequence of basic blocks explored within a function
only grows and will grow very quickly in presence of cycles in control ow
graphs.

2.2 Partial tracing of intra-procedural executions

Keeping basic blocks sequences in the automaton stack is useless for
enforcing control ow integrity policy as only the topmost (i.e. currently
executing) basic block of the stack is used in practice. The main benet of
keeping the complete trace of executed basic blocks is to provide very
precise information for a posteriori analysis of control ow integrity
violation. If only the last basic block were kept, it would be very rough to
understand how a violation occurred. As a compromise, we propose in
this section to keep incomplete sequences of basic blocks in a way
that guarantees a bounded size for any basic block sequences without
losing too much information for a posteriori analysis of compromised
execution.

 In order to build only nite sequences of basic blocks in the transition
corresponding to the input cfiAfterJump of the control ow integrity policy,
we rely on the domination relationship. Computation of this relation
permits to discover the set of basic blocks that will systematically
be explored/executed from a given basic block in order to reach the
exit basic block of a function. Consequently the sequence of explored
basic blocks will be extended only if the basic block prepended to the
current sequence cannot be executed anymore before the end of the
function.

Denition 7 (Post-dominator). Let Gf = (V f;Ef) be the control
ow graph of a function f with a single entry basic block denoted entry(f)
and a single exit basic block denoted exit(f).

 A basic block b1 2 V f post-dominates a basic block b2 2 V f such that
b1≠b2, noted b1 2 pd(b2) i b1 is involved in every path from b2 to exit(f)
in the CFG.

 Knowing that a basic block b1 post-dominates a basic block b2 is sucient
to decide whether b1 can be prepended to the current sequence starting with

b2 when b1 is executed. However, a more ecient test can be dened than an
inclusion in a set if the immediate post-dominator relationship is used. A basic
block b1 is the immediate post-dominator of a basic block b2 if it is the rst
basic block that will be systematically explored/executed to reach the end of
the function when b2 is executed.

Denition 8 (Immediate post-dominator). Let Gf = (V f;Ef) be
the control ow graph of a function f.

 A node b1 2 V f is the immediate post-dominator of a node b2 2 V f,
noted b1 = ipd(b2), i b1 2 pd(b2) and @b 2 V f b1 2 pd(b) ^ b 2 pd(b2).

 Given these denitions, the transition rule associated to the cfiAfterJump
hook in Denition 6 is modied to push/prepend the basic block to
be executed only if it is the immediate post-dominator of the last
pushed/prepended one. In order to maintain the Proposition 1 proved in
the previous section, the top of the stack (i.e. the rst basic block of
the sequence) must always be the currently executing one. So, when
the immediate domination condition is not veried, the top of the
stack is updated to always contain the currently executing basic block.
	[image: 0
(qb;cfiAfterJump (f;b);hf;b i) =
 (f(q ;hf;b0b i) j (b;b0) 2 E g i b0 = ipd(b)
 e 0 0 f
 f(qe;hf;b i) j (b;b) 2 Ef g otherwise
]

 The size of the sequence of basic blocks explored is now bounded by
the number of basic blocks in the CFG of the currently executing
function.

3 Implementation

To experiment with our proposed CFI protection on
LLVM IR, an implementation has been developed, called

Picon1 ,
based on the LLVM compiler framework [16] version 3.5. This implementation
supports any program compiled by the Clang frontend, which is the LLVM
native C/C++/Objective-C compiler.

3.1 Overview

Picon is implemented in a two-step process, to follow the denitions given in
the previous section :

 	during compilation, a plugin instruments the code ;

 	at runtime, an external execution monitor implements the state
 automaton to enforce the control ow integrity policy of the
 instrumented program.

 Unlike others [15, 19], we have chosen not to fork the LLVM compiler, but
rather to create a dynamically loaded module for the opt tool to implement
the compilation step. Currently, compilation of an input source le (C or
C++) by the Clang frontend produces a le in the LLVM Intermediate
Representation (IR), which is the common code representation used
throughout all target-independent phases of the LLVM compilation process.
We have chosen to instrument the LLVM IR because of the following
advantages :

 	easier to handle than C or C++ ;

 	input/source language independent ;

 	architecture independent ;

 	well structured into functions and basic blocks, each of which
 contains instructions in Static Single Assignment (SSA) form.

While this choice may restrict possible actions only to the APIs exported by
LLVM, this also greatly reduces the dependency on LLVM internal functions,
and makes maintenance easier (especially to keep the plugin up to date,
LLVM being a very active project). The compilation workow, including
the Picon plugin step, from a C le to a nal binary is depicted on

Figure 1.

 SVG-Viewer needed.

Figure 1: Compilation of a single source le with the Picon plugin in
gray.

 The main goal of the plugin is to instrument the code to introduce
communication hooks with an external execution monitor. However, it is also
in charge of producing several les where essential data is stored : identiers
generated for functions and basic blocks to handle separate compilation units
and dynamically linked libraries, and transition tables which contain all
control ow related data that will be passed to the external execution
monitor. In fact, when an instrumented program is executed, it requires the
execution monitor to be running with the corresponding transition tables
loaded.

 It is important to note that the instrumentation and the creation of
transition tables is done in a completely static and automatic manner.

3.2 Instrumentation of the LLVM IR

The Picon plugin has two levels of granularity. One can decide to protect
only inter-procedural control ow (i.e. function calls), or both inter- and
intra-procedural (i.e. basic block transitions) control ow.

 The instrumentation is a two-step process. First, unique identiers
are computed and assigned to each function, and each basic block if
intra-procedural protection is activated. Then, the instrumentation code is
injected to communicate with the execution monitor, relying on identiers
previously computed to name functions and basic blocks.

Attribution of identiers

A unique identier is assigned to each function and to each basic block,
when appropriate ; these identiers are later denoted idFun and idBB,
respectively.

 Assigning unique identiers to each function may appear trivial. However,
in case of binaries created from multiple source les, some diculties arise
because function identiers must be identical for the same functions across
dierent compiler executions. To solve this problem, the plugin creates and
maintains across compilations a le where each function already encountered
is mapped to its unique identier. When a call to a function not yet
dened is encountered, the plugin assigns it a new unique identier
according to those already used and updates the le. Algorithm 1
depicts this straightforward algorithm. An analogous process is applied
to compute and to assign a unique identier to each basic block per
function.

 1: procedure GetFunctionIdentifier
 2: for f in all functions do
 3: if HasAlreadyBeenIdentied(f) then
 4: idFun GetIdentier(f)
 5: else
 6: idFun GetUniqRandomID(f)
 7: end if
 8: end for
 9: end procedure

 Algorithm 1: Function Identier Attribution at Compile Time

 Once a unique identier is assigned to each function and each basic block,
the plugin creates the transition tables according to the desired level of
granularity for the control ow integrity protection, i.e. with(out)
intra-procedural control ow. The inter-procedural transition table exactly
consists in the set of edges appearing in the call graph along with the
edge labeling function (Denition 4), so if the plugin has to build this
transition table, it iterates over all functions and all basic blocks of these
functions of the compilation unit to build its call graph. Building the
intra-procedural transition table is a completely analogous process, but
applied to each function for which it has to build its control ow graph
(Denition 3).

Code instrumentation

Code instrumentation must be done according to the Denition 5 in the
model section. That is, instrumentation consists in inserting some hooks, i.e.
predened sequences of instructions, at strategical positions in the code, to
report execution ow bifurcations to the execution monitor, as shown in the
Denition 6.

 There are several ways to implement these hooks : a hook can be a call to a
custom function, a specic syscall, a jump to some inlined basic block, etc.
It is important to note that a hook is a sensitive piece of code that
must be written carefully not to introduce vulnerable code such as
gadgets. In the implementation proposed, we have chosen to implement
each hook by a custom function call. Figure 2 gives an example of a
non-instrumented foo function, and Figure 3 shows the same foo function
with injected instrumentation code (both inter- and intra-procedural related
hooks).

[image: PIC]

Figure 2: Example CFG of a foo function.

[image: PIC]

Figure 3: CFG of the instrumented foo function of Figure 2.

 According to the level of granularity set in the plugin, only a subset of the
six available hooks may be inserted according to the Denition 5. For the
mandatory inter-procedural protection, the four following hooks are
systematically inserted : cfiCall, cfiReturned, cfiEnter and cfiExit. If
intra-procedural protection is activated, then the two following hooks are also
inserted : cfiAfterJump and cfiBeforeJump.

3.3 Resolution of externals

The compilation of a source le is a local process : the LLVM compiler only has
information on the le being compiled. This causes problems when handling
calls to external functions. In particular, it is not possible at that point to
distinguish functions that will be dened in another object le linked into
the same executable from functions that will be stored in external
shared libraries. In the following, the term module designates a single
binary compilation target, for example an executable le, or a shared
library.

 A module identier, later denoted idMod, is assigned for the complete
binary target being compiled (all object les part of the same binary share the
same module identier). The module identier is generated at compile-time, it
has to be unique and deterministic. For example, it can be derived from a
cryptographic hash of the binary.

 When analyzing a C le, it is not possible to know if a function, e.g.
printf, will be dened in the same binary or in a shared library before the
link step. A function dened in a shared library can also be shadowed by a
function with the same name in the current binary.

 We have decided not to try identifying the modules of functions during the
compilation process, because it is not easy, or even feasible. Instead, function
identiers are automatically assigned. These identiers are relative and
unique to the current module. This method allows the compilation
process to remain simple, but results in a new problem : the identier
of a function f will not be the same in module m1 and in module
m2.

 The compilation process has to be modied to add new steps in order to
identify the symbols and the dierent modules, and to add information to the
created les for the monitor. The modied compilation workow is depicted
on Figure 4.

 SVG-Viewer needed.

Figure 4: Modied compilation process, with externals

 After the compilation process, there is one identier le per resulting
binary (a standalone executable, or shared library, for example), containing
function identiers. We have to bind the caller module identier with
the callee module identier. This process is done in two steps : symbol
identication and symbol binding (described in the next section). The symbol
identication step resolves dynamically linked function and their identiers.
For this, a Python script analyzes the compiled binary using objdump, and
nds all symbols related to external functions. Each external symbol is
then searched for recursively in each shared library dependencies of
the binary, to identify in which library it is dened, and thus to nd
the associated module and transitions les. The transitions le of the
binary is then updated to link each symbol to the identier of the found
module.

 If a function is dened in several libraries, the binary instrumented with
Picon will only be allowed to call the one that matched the function
identication. This provides a protection against library replacement, or
symbol override by one of the libraries.

 The identication of symbols is described in Algorithm 2. To be correct,
this algorithm must follow the resolution of symbols as done by the ld loader,
otherwise the function that will eectively be called at runtime will not be
authorized.

 1: procedure ResolveExternalSymbols
 2: libs GetAllLibrariesRecursively(binary)
 3: for sym in all symbols of binary do
 4: if IsExternalSymbol(sym) then
 5: lib GetLibraryContaining(sym;libs)
 6: ModuleId GetFileIdentier(lib)
 7: UpdateModuleIdentierForFunction(binary, sym, ModuleId)
 8: end if
 9: end for
 10: end procedure

 Algorithm 2: Module Identier Merging after the linker pass

 For example, the printf function, is rst marked as an external
symbol in a.out.cfi. Using ldd and objdump recursively, the symbol is
found in /lib/x86_64-linux-gnu/libc.so.6. The corresponding
identiers le is libc.so.6.cfi, which has been created during the
compilation of libc.so.6 with Picon enabled. Using this le, we
check that an identier exists in order to verify the transitions, but,
at this point, the exact identier of the function is not important.
Finally, we update the binary's identiers le and add the information
that the printf function is associated with the module identier of
libc.so.6.

3.4 Execution monitor

The execution monitor is externalized from the instrumented binary ; it can be
implemented in dierent places : for example in a user process or in the
kernel, as described in Section 1.1. In Picon, the execution monitor is
implemented as an external process, which forks and uses the child to run the
instrumented program, and uses pipes to communicate. To ease the
burden of storing the transitions les, and running the monitor before
each instrumented program, the following enhancements have been
added :

 	the transition les are embedded directly in the instrumented les,
 by adding custom ELF sections ;

 	code to re-exec the monitor is inserted, so running the
 instrumented binary will really run the monitor, setup the monitor,
 and run the instrumented program.

When the execution monitor starts, it looks in the ELF section headers of the
instrumented binary for a Picon description le, describing the needed
information for that binary. The Picon description le contains the
unique module identier idMod of the binary, its dependencies, and the
transition table. The monitor must then recursively load all transition les
and dependencies. If they are embedded, it is important to ensure
the Picon description les nor the transition tables are modied.
A simple solution is to use an asymmetric signature to sign the le
headers, so that the monitor will be able to verify the integrity of the
headers.

 The transition table contains the allowed transitions inside the binary
described in Section 3.2. Dependencies indicate the list of transition tables
required for external libraries. Algorithm 3 describes how the monitor loads
the transition les, and marks identiers for the same function in dierent
modules as equivalent.

 1: procedure MergeTransitionsFile
 2: for m in all modules do
 3: m_id GetModuleIdentifier(m)
 4: for f in all functions(m) do
 5: f_id GetFunctionIdentifier(f)
 6: AddEquivalence(f;(m_id;f_id))
 7: end for
 8: end for
 9: end procedure

 Algorithm 3: Loading and unifying the transition les in the monitor

 Each time a function f is used (or dened), the pair (mi;fi) is added to
the equivalence class of f. After loading all the transition les, if the function
f is used in dierent modules, its equivalence class contains a list of tuples
[(m1;f1);(m2;f2);…].

 When a function f in a module m1 is about to call function g
in module m2, the Picon plugin has inserted a cfiCall with the
identiers (m1;g1), that is, the identier of g as seen in module m1. To
verify this function call in m2, the monitor will verify during cfiEnter
of g that the value (m2;g2) as seen in module m2 is equivalent to
(m1;g1).

 Each time the monitored process hits a Picon hook, it noties
the execution monitor with current information about the context, as
dened in the Denition 6 of the model section : the current module and
function identiers, and return address for cfiEnter. The monitor
updates the state of the process being instrumented. Two types of
unauthorized behaviours can be detected : state mismatch, and identication
mismatch.

 After a cfiCall instrumentation, if the next instrumentation is a
cfiBeforeJump, the execution monitor triggers a state mismatch because
cfiEnter is expected after a cfiCall. The list of all possible automaton
states is described in Figure 5.

 SVG-Viewer needed.

Figure 5: Execution monitor's state machine.

 An identication mismatch can happen, for example, when a cfiCall
registers a function identier to be called, and a dierent function identier
from the CFG allowed-transition (dened at compile time in the transitions
le) is provided during the cfiEnter. Identication can also mismatch for a
basic blocks transition when cfiBeforeJump provides a given idBB,
and cfiAfterJump provides a dierent one from the CFG expected
one.

 Identication mismatch and state mismatch both trigger an alert from the
execution monitor depending on the security policy used. The best action is to
kill the instrumented process, but the execution monitor can also log the
unexpected behaviour with precise information about the transition for
debugging purposes.

4 Discussion and results

4.1 Security evaluation

The evaluation of the security of the protected program is done by
comparing the number of gadgets in the original binary, and in the
protected one. While it is not possible to prevent code-reuse attacks
globally, our objective is to reduce the number of available ROP gadgets
as much as possible, and to verify that tools cannot reconstruct a
shellcode.

Return-to-libc attacks

Return-to-libc is the perfect candidate to bypass the well known NX
protection. With Picon protection applied to all functions dynamically linked
to an instrumented binary, it is possible to prevent this type of attack by
denying calls to forbidden functions of the libc like system or execve beyond
their expected uses.

Return-oriented programming attacks

Picon can successfully instrument all non-dynamic call instructions, which
results in a signicant decrease of the usable ROP gadgets. To successfully

bypass our model, attackers have to nd ROP gadgets that are not protected
by Picon. However, as seen before, CFI instrumentation is widely used in a
protected binary, and to fully create a reliable ROP gadgets payload, attackers
have to build their entire payload while taking care not to fall in an
instrumented portion of code, which will result in an execution monitor
alert.

 Picon, by instrumenting all return sequences in compiled programs,
avoids all these potential ROP gadgets. Our current implementation does,
however, keep the linked C runtime unchanged, which has 6 such gadgets in
the glibc version of crt1.o used :

 	_init which is preceded by an add and a call instruction.

 	_deregister_tm_clones, preceded by a pop %rbp and a ja
 instruction.

 	register_tm_clones, preceded by a pop %rbp and a ja
 instruction.

 	__do_global_dtors_aux, preceded by a movb, pop %rbp, and
 call instruction.

 	__libc_csu_init, preceded by a popa and a call instruction.

 	and __libc_csu_fini.

 Another source of gadgets is the Picon runtime itself, which embeds a few
functions containing potential gadgets : seven functions contains potential
gadgets, but ve of them are strictly identical in term of sequence of
instructions.

 Using a standard disassembler, we measured the number
of potential gadgets in a shared library, the Better String
Library 2 .
With standard compiler, 134 potential gadgets were found. With Picon
enabled, only 9 potential gadgets on aligned instructions remain.

 The following programs were also tested, looking for potential aligned
gadgets in Picon protected binaries, including all their dependencies :

 	star contains 13 gadgets, 4 protected ;

 	quark c1ntains 17 gadgets, 8 protected ;

 	puzzle solver contains 17 gadgets, 8 protected ;

 	sha1sum contains 18 gadgets, 9 protected.

This conrms that the remaining potential gadgets on aligned instructions are
those previously described, i.e. coming from Picon and C runtimes. All
return instructions in these binaries are unusable ROP gadgets.

 Note that tools like ROPgadgets [23] will search gadgets in the entire
program and also in unaligned instruction stream. This increase the resulting
number of gadgets available, but will be greatly reduced (to the number of
gadget protected by Picon minus previous gadgets from the runtime) with
the In-place Code randomization [18].

Return address attacks

Another way to hinder ROP is to replace the return address when entering a
function (using cfiEnter hook), and restore it by the execution monitor in
cfiExit hook. This means that, between the entry and the exit point of a
function, the return address is invalid, to complicate even more the work of an
attacker. We have implemented this extra feature in Picon, but it depends on
some security-oriented changes to the target-specic code generator, which is
target and architecture-dependent. The modication of LLVM to allow
the modication of the return address in a portable way is ongoing
work in LLVM project, and has not yet been nalized. We plan to
submit it to upstream LLVM later, as there might be other uses of this
feature.

Jump-oriented programming attacks

Possibilities of Jump-Oriented attacks are reduced, since the source code must
not use indirect jumps or calls. All calls or jumps are statically known during
the compilation, so the attacker cannot gain any gadget to jump to a
non-instrumented point. This, however, adds strong limits on input les :
indirect calls are used in C++ vtables, for example.

 Dierent solutions exist to add support of indirect calls while retaining
protection of the control ow. The rst solution is to use the instrumentation
of forward function calls which is currently being added to Clang [25].
Forward-edge CFI could be used as a complement of our protection, and
protect indirect calls using restricted jump tables. Forward-edge CFI is

done during LTO and would not be integrated by Picon, so another
solution is to use the information provided by LLVM to instrument
indirect branches and dynamic calls in our model. This is left for future
work.

4.2 Implementation remarks

 Compiler optimizations

In some cases, compiler optimizations introduce a change in the symmetry of
enter/exit points of functions, for example the tail-call optimization. This
optimization changes the instructions of a function to transform recursive
function calls into iterative execution of basic blocks, heavily modifying the
structure and the contents of the function.

 To avoid this kind of problems, the Picon pass must be the last pass
executed on the LLVM IR. Other optimizations must be applied before,
especially those modifying the control ow graph.

Execution environment

As our implementation uses an external monitor, it is critical to ensure the
security of communications with the monitor. The process and the monitor
should be mutually authenticated, and the integrity of the communication
channel should be ensured to avoid Man-In-The-Middle (MITM) classes of
attacks.

 In Picon, the communication channel between the monitor and
the instrumented binary is a pair of unnamed pipes. This requires,
however, the monitor and the process to be created in the same process
hierarchy.

 Another possible attack is to preload shared libraries (for example using
LD_PRELOAD) to override some functions, most importantly the functions used
to communicate with the monitor. To avoid that, the execution environment
should be restricted to prevent preloading custom libraries, for example using
the noexec mount option to prevent the user to be able to build libraries and
use them, and/or by patching the ld command to remove the preload feature.
Another workaround is to set le capabilities on the instrumented
program using SELinux or any other mechanism to disable the preload
feature.

Authorized functions whitelist

Sometimes, the program has to be linked with closed-source binary-only
dynamic libraries. Picon has the abilities to handle these cases, and
implements a whitelisting mechanism to permit non-instrumented calls
to/returns from some given functions. When compiling a program with Picon
enabled, instrumentation will not be inserted in functions present in
the whitelist, and the transition will not be veried. However, it is
clear that excluding dynamic libraries of the control ow integrity is
insecure, and results in the addition of free ROP gadgets in the resulting
executable.

 A workaround, for closed-source libraries, could be to implement the same
protection by disassembling the le, reconstructing the control ow graph, and
adding the hooks to protect it. This has several drawbacks : notably, it is not
portable, and rebuilded basic blocks is not as precise as computing basic
blocks from source code.

4.3 Limitations

 Multi-programming

Our implementation is currently not able to handle program with
parallel/concurrent programming, i.e. multiple threads/processes. One
straightforward way to override this limit is to instrument concurrency-related
system calls (clone(2) and fork(2) on POSIX systems, for instances).

 By injecting specic instrumentation code for these calls, it has been
possible to successfully detect the creation of new processes, and to instantiate
a dedicated execution monitor for each process. Each monitor had its own
dedicated state machine, and was able to monitor one process. However, more
work is required to fully implement multi-programming support in Picon, but
also to support multi-threading.

Parallel compilation

When compiling dierent source les of a program with Picon enabled, each
le requires information about other les, for example function identiers in

the transitions le as shown in Figure 4. This requires a sequential
compilation because of a race condition on the access to the transition le. A
solution could be to implement locking on the transition le, to ensure
only one instance of the compiler process can modify it at the same
time.

Dynamic code

To implement the CFI protection, we rely on the construction of the control
ow graph statically, and thus are not able to track dynamic function calls as
used in just-in-time (JIT) compilation, exceptions, pointer arithmetic on
function addresses or dynamic loading of shared libraries. This limitation is
shared by most CFI approaches.

4.4 Future work

 Binary instrumentation

One fundamental limitation of our approach is the requirement of the source
code, and the need to compile them. When the source code of a program is
not available, as it is usually the case for commercial software, or it is not
supported by Clang, instrumentation of a program is not possible with our
current compile-time instrumentation.

 To instrument binary les, one solution is to decompile the executable
into LLVM IR, apply the Picon pass on the resulting LLVM IR, and
then compile it back to an executable. However, the binary translation
environment provides some additional challenges. Static translation has
some fundamental limitations, due to its equivalence to the halting
problem [14] making it undecidable. One such limitation is the presence of
indirect branches and calls, which do not have statically discoverable
targets. In practice, indirect branches are usually caused by the following
constructions :

 	indirect gotos (a rarely used feature of the C and other languages) ;

 	switch lowering to jump-tables (a compiler optimization).

In the case of an executable that has not been specially crafted, indirect calls
targets are expected to be in the set of all function symbols available in the
binary, and can usually be recovered by static or dynamic analysis.

 Projects such as Dagger [9] have been successfully tested, and provide a
straightforward method to instrument executable les without requiring the
source code.

Link-time optimization

Modern compilers such as LLVM support a feature called Link-Time
Optimization (LTO), which defers code generation to link-time, and keeps the
intermediate object les in LLVM IR. Traditionally, this was used with great
success to enable optimizations otherwise impossible on isolated le (such as
cross-object function inlining). The Picon pass could be implemented as a
part of LTO IR optimizations. This would solve the problems related to
cross-object transition table and identication uniquing, by having all
functions visible in a single IR module. Also, LTO improves precision by
making the program's complete control ow graph available. Finally,
since LTO passes run as part of the ld linker, it is also possible to
directly use the linker for resolving external function symbols in linked
shared libraries, thus avoiding the need of symbols identication at
compile-time.

Picon and obfuscation mechanisms

Picon protects the binary for execution integrity, but does not hide the
instrumentation, or the control ow graph of the binary. Other protection
mechanisms, especially obfuscation techniques such as o-llvm [19] at the
LLVM IR layer, or a Protector Packer [22] like UPX at the binary layer, could
be used in addition to CFI protection.

 However, obfuscation and CFI might interfere. The obfuscation must not
break the CFI protection by altering the semantics of the program. The
obfuscation step must not create dynamic-code/self modifying code
(sometimes used in virtualized packer) nor add gadgets for the obfuscation
step. Although CFI and obfuscation could be used together, the CFI adds
extra information about the CFG that could help an attacker to reconstruct
the logic of the program.

5 Conclusion

In this paper, we have discussed a model for robust control ow integrity
protection, and the security properties of programs protected by this model. A
proof-of-concept implementation has been proposed, based on the
LLVM compiler framework, and an external monitor. The result is a
plugin for the LLVM compiler called Picon, which does not complicate
the compilation process. The plugin allows a global protection of the
program, including shared libraries, without having to sacrice parts of the
protection.

 As complementary, simpler protections like prevention of execution of the
stack and randomization become commonplace, we believe that control ow
integrity will become more systematic in the future as it is a key part of the
protection against ROP attacks. The protection of control ow integrity must
be complete to be powerful, and thus must not be weakened for the sake of
performances.

Références

 1. Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-ow
 Integrity. pages 340353, 2005.

 2.
 Starr Andersen and Vincent Abella. Changes to functionality in microsoft windows
 xp service pack 2, part 3 : Memory protection technologies, Data Execution
 Prevention. https://technet.microsoft.com/en-us/library/bb457155.aspx.
 Accessed : 2015-01-21.

 3. David Basin, Vincent Jugé, Felix Klaedtke, and Eugen Zălinescu. Enforceable
 Security Policies Revisited. In Pierpaolo Degano and Joshua D. Guttman, editors,
 Principles of Security and Trust, volume 7215 of Lecture Notes in Computer
 Science, pages 309328. Springer Berlin Heidelberg, 2012.

 4. Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan
 Boneh. Hacking Blind. pages 227242, 2014.

 5. R.J. Black, T.W. Burrell, M.O.T. de Castro, M.S. Da Silva Costa,
 K. Johnson, and M.R. Miller. Control ow integrity enforcement at scale,
 October 24 2013. US Patent App. 13/450,487.

 6. Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang.
 Jump-oriented Programming : A New Class of Code-reuse Attack. pages 3040,
 2011.

 7. Tyler K. Bletsch, Xuxian Jiang, and Vincent W. Freeh. Mitigating code-reuse
 attacks with control-ow locking. pages 353362, 2011.

 8. Erik Bosman and Herbert Bos. Framing Signals - A Return to Portable
 Shellcode. pages 243258, 2014.

 9. Ahmed Bougacha, Georoy Aubey, Pierre Collet, Thomas Coudray, Amaury
 de la Vieuville, and Jonathan Salwan. Dagger : decompiling to LLVM IR. LLVM
 Europe, 2013.

10. Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
 Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang.
 StackGuard : Automatic Adaptive Detection and Prevention of Buer-overow
 Attacks. pages 55, 1998.

11. Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiany
 Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed
 Okhravi. Missing the Point(er) : On the Eectiveness of Code Pointer Integrity.
 May 2015.

12. Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Gerogios Portokalidis.
 Out Of Control : Overcoming Control-Flow Integrity. May 2014.

13. Jim Hogg. Visual Studio 2015 Preview : Work-in-Progress Security Feature.
 http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx.
 Accessed : 2015-01-21.

14. R. Nigel Horspool and Nenad Marovac. An Approach to the Problem of
 Detranslation of Computer Programs. Comput. J., 23(3) :223229, 1980.

15. Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea,
 R. Sekar, and Dawn Song. Code-pointer Integrity. pages 147163, 2014.

16. Chris Lattner and Vikram Adve. LLVM : A Compilation Framework for Lifelong
 Program Analysis and Transformation. pages 7588, Mar 2004.

17. Kyung-Suk Lhee and Steve J. Chapin. Buer Overow and Format String
 Overow Vulnerabilities. Softw. Pract. Exper., 33(5) :423460, April 2003.

18. Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing
 the Gadgets : Hindering Return-Oriented Programming Using In-place Code
 Randomization. pages 601615, 2012.

19. Grégory Ruch Pascal Junod, Julien Rinaldini. Obfuscator-LLVM.
 http://www.o-llvm.org. Accessed : 2015-01-21.

20. Mathias Payer and Thomas R. Gross. String Oriented Programming : When
 ASLR is Not Enough. pages 2 :12 :9, 2013.

21. Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
 Return-Oriented Programming : Systems, Languages, and Applications. ACM
 Trans. Inf. Syst. Secur., 15(1) :2 :12 :34, March 2012.

22. Kevin A. Roundy and Barton P. Miller. Binary-code Obfuscations in
 Prevalent Packer Tools. ACM Comput. Surv., 46(1) :4 :14 :32, July 2013.

23. Jonathan Salwan. ROPgadget.
 https://github.com/JonathanSalwan/ROPgadget. Accessed : 2015-01-21.

24. Fred B. Schneider. Enforceable Security Policies. ACM Trans. Inf. Syst.
 Secur., 3(1), February 2000.

25. The Clang Team. Clang 3.7 documentation : Control Flow
 Integrity. http://clang.llvm.org/docs/ControlFlowIntegrity.html. Accessed :
 2015-04-08.

26. Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
 Erlingsson, Luis Lozano, and Geo Pike. Enforcing Forward-edge Control-ow
 Integrity in GCC & LLVM. pages 941955, 2014.

27. Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon : Detecting
 Violation of Control Flow Integrity Using Performance Counters. pages 112, 2012.

28. Zhongxing Xu, Ted Kremenek, and Jian Zhang. A Memory Model for Static
 Analysis of C Programs. pages 535548, 2010.

29. Mingwei Zhang and R. Sekar. Control Flow Integrity for COTS Binaries. pages
 337352, 2013.

 1. Protect Integrity of CONtrol ow

 2. http ://bstring.sourceforge.net/

_master-ebook5x.png
0(qp, cfiAfterJump (f,b'), (f,bo)) =

{{<qe, (£,6b0)) | (b,1) € By} iff o = ipd(b)
{(ge, (f,b'a)) | (b,b') € Ef} otherwise

_master-ebook3x.png
{{(qm)} iff b € exit(f)

0 otherwise

_master-ebook4x.png
{{<qe, (£,00))} iff b= entry(f)

0 otherwise

_master-ebook1x.png
0(ge,ctiCall f', (f, bo)) =
{{<qc, (f' entry(f)(f.b0)) | (f.f) € Ep} iff b€ Bp(f, f)

0 otherwise

_master-ebook2x.png
5(g-, cfiReturned f', (f,bo)) =
{{(qe, (f,00)) | (f.f') € Ep} iff b€ Bp(f, f")

0 otherwise

_master-ebook0x.png

_master-ebook6x.png
entry:

Ya.addr = alloca 132, align 4

store i32 %a, i32* %a.addr, align 4
br label %start

start:

%0 = load i32* %a.addr, align 4
Yocmp = icmp sgt i32 %0, 10
br il %cmp, label %if.then, label %if.else

T F

if.then:

Yocall = call 132 @call_left()

%1 = load i32* %a.addr, align 4
%dec = add nsw i32 %1, -1

store 132 %dec, i32* %a.addr, align 4

if.else:
Yocalll = call 132 @call_right()
br label %if.end

br label %start

if.end:
ret void

_master-ebook7x.png
entry:

Yoa.addr = alloca 32, align 4
store 132 %a, i32* %a.addr, align 4
call void @__CFI_INTERNAL_BB_BEFORE_BR(i32 0)

Yosaved_retaddr_prolog = call i8* @llvm.returnaddress(i32 0)
call void @__CFI_INTERNAL_ENTER(i32 13, i32 0, i8* %saved_retaddr_prolog)

br label %start

start:

%0 = load i32* %a.addr, align 4
Yocmp = icmp sgt i32 %0, 10

bril %cmp, label %if.then, label %if.else

call void @__CFI_INTERNAL_BB_AFTER_BR(i32 1)

call void @__CFI_INTERNAL_BB_BEFORE_BR(i32 1)

T F

if.then:

call void @__CFI_INTERNAL_BB_AFTER_BR(i32 2)
call void @__CFI_INTERNAL_CALL(i32 11, i32 0)
Yocall = call i32 @call_left()

call void @__CFI_INTERNAL_RETURNED(i32 11, i32 0)
%1 = load i32* %a.addr, align 4

%dec = add nsw i32 %1, -1

store 132 %dec, i32* %a.addr, align 4

call void @__CFI_INTERNAL_BB_BEFORE_BR(i32 2)

if.else:

call void @__CFI_INTERNAL_BB_AFTEF
call void @__CFI_INTERNAL_CALL(i32
Pocalll = call i32 @call_right()

call void @__CFI_INTERNAL_RETURNE
call void @__CFI_INTERNAL_BB_BEFOI
br label %if.end

br label %start

if.end:

ret void

call void @__CFI_INTERNAL_BB_AFTER_BR(i32-
Yosaved_retaddr_epilog = call i8* @llvm.returnaddres
call void @__CFI_INTERNAL_EXIT(i32 13, i32 0, i

cover.png
Symposium sur la sécurité des technologies
de I'information et des communications

