

 Table of Contents

 1 Introduction

 2 Background

 3 USBq Board

 4 USBq Core

 5 USBq userland

USBiquitous: USB intrusion toolkit

Benoît Camredon

benoit.camredon@airbus.com

Airbus Group

 Abstract. The USBiquitous project is a set of open source tools to
 interact with USB communications. It is composed of a hardware part
 embedding a Linux system with a bespoke kernel module, and a set of
 userland scripts and libraries, each designed to tackle a specific problem
 linked to USB communications. Emulating a USB host, device, or simply
 performing a man in the middle attack between a host and a device can
 then be done with a few lines of code in a userland script.

 1 Introduction

 1.1 Context

USB devices are everywhere: keyboards, mice, USB keys, webcams, WiFi
adapters, phones... and USB interfaces are appearing on every equipment of
our every day life [9]. The situation is not going to change with the Internet
Of Things (IOT) development.

 In industrial settings, USB interfaces are already widespread. Every new
car already has one or more USB plugs, that can be used either to get
electrical power to recharge our phones, iPods... or simply to play music. In
can also be used to retrieve logs or to update firmware. USB is an all-purpose

interface and even the most change-averse individuals are forced to adopt this
standard.

 Naturally, this interface is a security attack target and more and more
tools exist to assess the robustness of systems using this interface [2, 5], that
make it mandatory to improve our USB tools to protect systems against this
not new, but nevertheless growing attack vector.

 To conduct audits on systems having USB interfaces, we needed to have a
good understanding of this protocol, and the low level layers of the Linux
kernel that implement it. On this journey to understanding the USB protocol,
we have developed the USBiquitous framework, as a means to experiment
while learning.

 This framework has accumulated enough useful features to become an
effective tool during audits of systems that include a USB interface.

 1.2 Framework design

More than a tool, USBiquitous (USBq) is a framework that can be easily
adapted to suit several needs.

 It is composed of four parts:

 	A hardware part, named USBq Board, that has several USB interfaces,
 and runs a Linux operating system

 	A Linux kernel module, named USBq Core, running on the USBq
 Board

 	A userland library, which provides users with the framework of the
 USBq API, to be used to write applications

 	Userland applications, named USBq Apps, which perform a specific
 task, using the USBq API

 The USBq Board can be:

 	connected to a host and act as a USB device

 	connected to a device and act as a USB host

 	connected between a host and a device and act as a USB proxy

[image: PIC]

Fig. 1: USBq modes

 Used together, the USBq Core and USBq Board forward USB
communications in both directions between a USB entity (host or device), and
an USBq App, through the userland USBq API, where that can conveniently
be manipulated (see figure 2).

[image: PIC]

Fig. 2: USBq design

 The task of the USBq APP depends on the problem to tackle. In device
emulation it could be to assess the robustness of the targeted host USB stack,
or simply to emulate a keyboard acting as a USB rubber ducky [12]. In proxy
mode, it could be to perform USB communications recording, to allow offline
investigations, or to apply mutations to fuzz a USB driver. In host mode, it
could be to analyze responses from the USB device to fingerprint its USB
stack.

 The userland part is free to focus on the specific problem it is intended to
resolve while abstracting away low level USB details.

 1.3 State of the art

Playing with USB communications is not something new and nowadays
several opensource tools are already available.

 Facedancer

The facedancer [2, 4, 3] is the most famous one. It is a bespoke USB
hardware device that can be configured to perform USB device emulation or
USB host emulation, but not both at the same time. It is a very powerful tool
as it allows implementing very easily a host or a device using provided python
libraries.

 The umap [16] tool, is based on the facedancer and can be used to fuzz
USB stacks or detect which kind of USB devices can be handled by the
host.

 Because the facedancer cannot be used as a device and a host at the same
time, it is not possible to use it as a Man in the middle tool. However, there is
a project [15, 14] based on two facedancers to perform a MITM, but it has
many performance issues.

 USBSniffer

USBSniffer [20] is the closest project to USBq in terms of design, but not in
terms of objectives. It was developed in 2010 for the Google summer of code,
but it is now inactive.

 USBSniffer is a Linux kernel module running on a BeagleBone black [1]
that implements a USB driver and emulates a USB device using the
GadgetAPI [5]. Both components are used to forward USB communications
from a device to a host. Then usbmon [19] and tcpdump are used to generate a
PCAP file of the USB communication.

 USBq tries to go further and isn’t limited to sniffing only.

 USBProxy

USBProxy is a C++ userland program running on a BeagleBone black [1] and
using GadgetFS [6] to emulate a device and the libusb [8] to communicate
with a USB device. It is possible to add plugins to interact with USB
communications.

 2 Background

This part outlines USB standard concepts and can be skipped, if they are
already known. It is based on several sources [21, 22].

 USB (Universal Serial Bus) is a protocol defining how a host and a device
shall communicate. It was designed to standardize the connection between a
computer and its peripherals, and to replace all older interfaces such as serial
or parallel ports.

 The first USB standard 0.8 was published in 1994. The latest is USB 3.1
issued in 2013. However, even if USB3 devices are prevalent, lots of USB2.0
devices are still in use. Each standard defines (among other things) the
maximum theoretical speed of the communication. For now, USBq is limited
to USB2.0 standard.

 2.1 Tiered-star topology

The architecture of USB consists of a host and a multitude of downstream
USB ports, and multiple peripheral devices connected in a tiered-star
topology. The host controller contains the root hub, on which several devices
can be connected, including other USB hubs (see figure 3).

[image: PIC]

Fig. 3: USB Topology

 Up to five USB hubs can be linked in series to handle a maximum of 127
devices.

 2.2 USB communication

USB communications always happen between a host and a
device1 .
The host manages traffic on the bus, and the device responds to requests from
the host.

 In order to communicate, hosts and devices use unidirectional pipes, called
endpoints, to send or receive data. The host sends data to the device
using an OUT endpoint, while it receives data using an IN endpoint (see
figure 4).

[image: PIC]

Fig. 4: IN/OUT communication

 Each device has a list of endpoints that it is able to use. Each has a set
characteristics that are communicated to the host using an endpoint
descriptor structure.

 The USB communication is done in two main steps: the enumeration
process which is used to determine USB devices capabilities, and the data
exchange.

 2.3 Transfer Type

Because several devices with completely different purposes and requirements
can be connected to a host, four types of data transfer have been defined:

 	Control Transfers commonly used for command and status operations.
 For example, they are involved in the enumeration phase, allowing the
 host to learn about device capabilities. All devices must be able to
 handle this type of data transfer

 	Interrupt transfers allow sending short messages, with a guaranteed
 latency and error detection. It is commonly used with HID USB
 devices, such as keyboards and mice

 	Bulk transfers allow sending or receiving large messages, handling
 error detection but without any latency guarantees. They are
 commonly used in mass-storage USB devices

 	Isochronous transfers used for messages requiring bounded latency,
 but no guarantee of delivery. They are commonly used for webcam
 and audio USB devices

 The transfer type is part of attributes of an endpoint, and as such is
included in the endpoint descriptor.

 2.4 USB Descriptors

The USB standard allows several completely different devices to connect to a
host through an identical protocol and wiring. Because several peripherals can
be connected on a same port, sharing the same interface, protocol shall define
a learning phase in order to discover its functionalities, called the enumeration
process.

[image: PIC]

Fig. 5: Main USB Descriptors

 Device descriptor

Each USB device has one device descriptor, comprising information such as its
product ID, vendor ID, class ID, the number of configurations... The operating
system uses the information in this descriptor (among other things) to load to
most appropriate driver.

struct usb_device_descriptor {
 __u8 bLength; // Size of the Descriptor in Bytes (18 bytes)
 __u8 bDescriptorType; // Device Descriptor (0x01)
 __le16 bcdUSB; // USB Specification Number which device complies too.
 __u8 bDeviceClass; // Class Code (Assigned by usb.org)
 __u8 bDeviceSubClass; // Subclass Code (Assigned by usb.org)
 __u8 bDeviceProtocol; // Protocol Code (Assigned by usb.org)
 __u8 bMaxPacketSize0; // Maximum Packet Size for Zero Endpoint
 __le16 idVendor; // Vendor ID
 __le16 idProduct; // Product ID (Assigned by Manufacturer)
 __le16 bcdDevice; // Device Release Number
 __u8 iManufacturer; // Index of Manufacturer String Descriptor
 __u8 iProduct; // Index of Product String Descriptor
 __u8 iSerialNumber; // Index of Serial Number String Descriptor
 __u8 bNumConfigurations; // Number of Possible Configurations
} __attribute__ ((packed));

 Listing 1.1:
 Device
 Descriptor

 Configuration descriptor

Each USB device can have one or more configurations depending on its
functionnalities. However, only one can be active at the same time. For
example, a USB device can have a mode where it can be upgraded, and a
mode in which it provides its standard functionality. It is up to the operating
system to choose the configuration it wants to enable. Most USB devices only
have one configuration.

struct usb_config_descriptor {
 __u8 bLength; // Size of Descriptor in Bytes
 __u8 bDescriptorType; // Configuration Descriptor (0x02)
 __le16 wTotalLength; // Total length in bytes of data returned
 __u8 bNumInterfaces; // Number of Interfaces
 __u8 bConfigurationValue; // Value to use as an argument to select this configuration
 __u8 iConfiguration; // Index of String Descriptor describing this configuration
 __u8 bmAttributes; // self powered, remote wake up...
 __u8 bMaxPower; // Maximum Power Consumption in 2mA units
} __attribute__ ((packed));

 Listing 1.2:
 Configuration
 Descriptor

SetConfiguration
 The host requests the device to use a specific configuration using the CTRL
OUT message SetConfiguration.

 Interface descriptor

For each configuration descriptor, one or more interface descriptors can exist.
Each interface descriptor represents a device feature. For example in a
webcam, an interface can represent the video feature, while another will
represent the audio one.

struct usb_interface_descriptor {
 __u8 bLength; // Size of Descriptor in Bytes (9 Bytes)
 __u8 bDescriptorType; // Interface Descriptor (0x04)
 __u8 bInterfaceNumber; // Number of Interface
 __u8 bAlternateSetting; // Value used to select alternative setting
 __u8 bNumEndpoints; // Number of Endpoints used for this interface
 __u8 bInterfaceClass; // Class Code
 __u8 bInterfaceSubClass; // Subclass Code
 __u8 bInterfaceProtocol; // Protocol Code
 __u8 iInterface; // Index of String Descriptor Describing this interface
} __attribute__ ((packed));

 Listing 1.3:
 Interface
 Descriptor

 Each interface can have several alternate settings, all describing the same
function. These settings are mutually exclusive, only one is active
at a time. Each setting has an interface descriptor and subordinate
descriptors as needed. For instance, devices that use isochronous transfers
can have alternate interface settings to be able to use more or less
bandwidth.

SetInterface
 For devices that use several alternate interface settings, this CTRL OUT
message allows the host to choose a specific one.

 Endpoint descriptor

For each interface descriptor, one or more endpoint descriptors can be used.
Each endpoint will be used for the data transfer between the host and the
device.

 The following information can be found in this descriptor

 	ID of the endpoint

 	Direction of the endpoint (is it used to send data from the host, or to
 receive data from the host)

 	Endpoint attributes including the kind of communication used
 (control, interrupt, bulk or isochronous)

 	Maximum message size used by the endpoint

 	Polling interval of transfers

struct usb_endpoint_descriptor {
 __u8 bLength; // Size of Descriptor in Bytes (7 bytes)
 __u8 bDescriptorType; // Endpoint Descriptor (0x05)
 __u8 bEndpointAddress; // Endpoint Address
 __u8 bmAttributes; // Transfer, synchronization, usage type
 __le16 wMaxPacketSize; // Maximum Packet Size
 __u8 bInterval; // Interval for polling endpoint data transfers
} __attribute__ ((packed));

 Listing 1.4:
 Endpoint
 Descriptor

 String descriptor

String descriptors are optional and are used to provide human readable
information about the device, such as its name or information about its
manufacturer.

struct usb_string_descriptor {
 __u8 bLength; // Size of Descriptor in Bytes
 __u8 bDescriptorType; // String Descriptor (0x03)
 __le16 wData[1]; // Supported language
} __attribute__ ((packed));

 Listing 1.5:
 String
 Descriptor

 Other descriptors

Other descriptors can exist that are class specific or vendor specific.

 3 USBq Board

The USBq Board is the hardware component of the USBq Framework. It runs
Linux, and includes the USBq Core linux module.

 It must have several USB ports available, including one port that can be
used in USB Host mode, in order to communicate with a USB device, and one
port that can be used in USB device or OTG [18] (On-The-Go) mode, in
order to communicate with a USB host.

 Originally, the development of USBq started on a IGEPv2 board [7] and
was continued on a BeagleBone Black [1], because of its more active
community. From a USBq point of view, there should be no difference between
these boards, or others that provide features described earlier in this
section.

 4 USBq Core

 4.1 Design

The USBq core is a Linux 4.1 kernel module running on top of GNU/Linux
OS.

 The general architecture described in the figure 6 is developed
below.

[image: PIC]

Fig. 6: USBq general design

 Software

The USBq core is composed of two elements:

 	A driver part in charge of the communication with USB devices called
 USBq driver

 	A gadget part in charge of the USB device emulation called USBq
 gadget

 While these parts are located in the same kernel module, they have no
direct link and could be split. For the rest of the article, they will be
considered as distinct modules.

 This segmentation design objective allows using:

 	only the driver part, and simulate a host in userland

 	only the gadget part, and simulate a device in userland

 	both parts, and act in MITM mode

 4.2 Internals design

USBq core uses the USB driver API in order to handle communications with
USB devices, acting as a USB Host, and uses the GadgetAPI in order to
emulate a USB device. While these two API are different, our design of
both elements shares the same base: an implementation driven by
endpoints.

 Endpoints API

As described in the previous section, USB devices expose one or more
endpoints through which communications are performed. The Endpoints API
of the USBq Core kernel module exposes a consistent interface to represent
endpoints of a device, abstracting differences in the kernel’s Gadget and
Device APIs.

 Within the USBq Core kernel module, every endpoint is represented as a
structure composed of several functions pointers:

 	send_usb: Used to send a message to the USB controller

 	recv_usb: Called by the kernel (Gadget or Device API) when a USB
 message is received from the USB controller

 	send_userland: Used to send a message to the userland program

 	recv_userland: Called by the kernel when a USB message is received
 from the userland program

 Whatever the kind of USB endpoints involved in the communication
(control, interrupt, bulk or isochronous), their corresponding structures are
composed of these main functions, in both driver and gadget parts. This
endpoint structure is the USBq vision of the real endpoint device.

 A very simplified example of an endpoint communication is described
below:

// Called when a USB message comes from USB controller
int recv_usb(struct ep_t ∗ep, msg_t ∗msg) {
 return ep−>send_userland(msg);
}

// Called when a USB message comes from userland
int recv_userland(struct ep_t ∗ep, msg_t ∗msg) {
 return ep−>send_usb(msg);
}

 Listing 1.6:
 Endpoint
 Algorithms

[image: PIC]

Fig. 7: Endpoint Communication

Initialization
 USB device endpoints characteristics are exchanged during the
enumeration phase in the configuration descriptor of the device. This
descriptor is parsed by the Linux kernel and forwarded by the USBq driver to
to the USBq gadget with a NEW_DEVICE message (see 4.2). This descriptor is
needed to create endpoint structures at USBq level.

 During USB communications the host can choose to enable or disable a set
of endpoints of a specific interface, in order for instance to increase or decrease
bandwidth allocated to the device. USB messages linked to this functionality
have to be intercepted to reflect the list of USBq enabled endpoints:

 	SetConfiguration, allows enabling a set of interfaces

 	SetInterface, allows enabling set of endpoints (and therefore disable
 others)

 Depending on the module side (the gadget or the driver), endpoints OUT or
IN respectively will be requested to send data during initialization, while
others will wait for userland communication.

USB reception
 USB messages reception is in general done in a completion handler that
has to be run in an uninterruptible context. Because userland communication
is network based, it is not possible to use it in that kind of context. So,
the completion handler uses a workqueue to dispatch processing of
incoming data to a worker thread, which communicates with USBq
API.

 USBq protocol

Communication between USBq Core kernel module and the USBq API
(userland) are performed using a protocol that is specific to the USBq
framework. This protocol is used to transfer USB communications but also to
send meta-data.

Meta-data
 Three kinds of meta-data messages are exchanged between the core and
the userland. The first one is a NEW_DEVICE message used to inform the gadget
part that a new device has been connected. This message can be sent either by
the device driver when it detects a device connection, or by a userland script
to emulate a new device connection. It embeds information about the
connected device, similar to the ones located in a full configuration descriptor
message. It is necessary for the core to know which configurations, interfaces
and endpoints the device is composed of. Using meta-data to send features of
a device allows fuzzing of the real USB message embedding this kind of
information.

 The second message is a RESET message used to inform the gadget part of
the device disconnection.

 Finally every USB data message is acknowledged using an ACK
message.

USB data
 Every USB message exchanged between a host and a device, is
encapsulated in a USBq message specifying the endpoint used by this message.
The message content is then embedded without any modification.

 4.3 Gadget module

The gadget module emulates a USB device using the Linux GadgetAPI [5].

 A gadget module has to register with this API using the kernel
usb_gadget_probe_driver function taking a usb_gadget_driver
structure. This parameter is mainly composed of function pointers:

 	bind: called to start the USB device emulation

 	setup: called when a control message is received from the host

 Thus those functions are implemented by USBq gadget to interact with
USB communications for the device emulation.

 Setup function

Because the USB communication is driven by the host, the setup function is
called as soon as a control request is received. Those requests can be:

 	GetDescriptor to request a specific descriptor such as device,
 configuration, or string descriptor

 	SetConfiguration to enable a specific device configuration

 	SetInterface to activate a specific alternative interface

 	...

 Some of those requests ask for specific device information, such as
GetDescriptor and are IN requests, others are used to configure the
USB device such as SetConfiguration or SetInterface and are OUT
requests.

 Sometimes, some USB control requests need to carry data that is not
embedded directly during the setup called. An additional request is then
necessary to retrieve the missing data.

 The setup function is called in an uninterruptible kernel context, imposing
the use of a workqueue in order to perform network exchanges.

 USB communication

At the gadget level, the USB communication is done with the kernel
usb_request structure that has to be filled depending on the endpoint
transfer type, either for sending data (IN) or receiving data (OUT). Sending is
done with the kernel usb_ep_queue function, and reception is done by
a callback specified in the usb_request. This function is wrapped
inside the USBq send_usb function (see 4.2) for gadget relative USBq
endpoints.

 MUSB

The kernel GadgetAPI is implemented on the top of MUSB which is a USB
controller provided by the Linux kernel. It is is responsible for the interface
with the USB OTG hardware.

[image: PIC]

Fig. 8: Architecture

 While the GadgetAPI allows to easily develop USB devices, it suffers from
some limitations and constraints linked to the use of MUSB. These are
described below.

Control request
 The setup (described in 4.3) is called when a control request has been
sent by the host to the emulated device. Unfortunately, MUSB does not
forward all those requests to the GadgetAPI (and thus to the gadget driver).
For instance SET_ADDRESS, CLEAR_FEATURE, SET_FEATURE requests are not
forwarded.

IN requests from a non control endpoint
 For non control endpoint, there is no function such as setup. So, from a
USB device point of view, it is not possible to know exactly when a host is
ready to receive information. The device has first to send its data, which will
be consumed whenever the host is ready to do so. Unfortunately, these
pending IN requests can have an impact on the way USBq works as will be
described later (see 4.4).

Endpoint statically defined
 In a USB device, endpoint characteristics such as transfer type, address,
and direction are fixed inside the hardware and cannot be changed. In the
same way, MUSB has a statically defined set of endpoints structure with their
address, direction and maximum packet size.

/* mode 2 - fits in 4KB */
static struct musb_fifo_cfg mode_2_cfg[] = {
{ .hw_ep_num = 1, .style = FIFO_TX, .maxpacket = 512, },
{ .hw_ep_num = 1, .style = FIFO_RX, .maxpacket = 512, },
{ .hw_ep_num = 2, .style = FIFO_TX, .maxpacket = 512, },
{ .hw_ep_num = 2, .style = FIFO_RX, .maxpacket = 512, },
{ .hw_ep_num = 3, .style = FIFO_RXTX, .maxpacket = 256, },
{ .hw_ep_num = 4, .style = FIFO_RXTX, .maxpacket = 256, },
};

 Listing 1.7:
 MUSB
 Endpoints
 table

 When a device is implemented using the GadgetAPI, endpoints that it can
use must exist in this table.

 For instance, if a gadget driver needs an IN endpoint 3 with packet
size of 512 bytes and the MUSB endpoint 3 is a IN endpoint with a
packet size of 256 bytes, MUSB will automatically adjust the endpoint
address and assign the first available endpoint that meets the required
characteristics.

 In a classical device development, this address modification is not a
problem. However, if the emulated USB device has to match a real device
hardware (because it will forward the communication to this device for
instance), it becomes a problem. It still possible to use a translation table only
if the translated address is not referenced in the communication data of
another endpoint...

 Gadget specificity

The gadget module will first initialize its communication module and wait for the
initialization packet2
describing the device that it has to emulate. As soon as this packet is received,
it builds its endpoints list and starts the USB device emulation.

 Descriptors requests will be received through its setup function, and
forwarded to userland. Because the setup function is executed in a
kernel uninterrupted context, a workqueue will handle the requests
forwarding.

 If SET_CONFIGURATION or SET_INTERFACE requests are received, the gadget
module will enable the corresponding interfaces and will activate their
endpoints. Non control OUT endpoints will then be requested, in order to be
able to receive data from host. Non control IN endpoints are data coming from
the device and then will be received from the userland, before being
forwarded.

 As previously explained in 4.3, requested endpoints addresses can be
modified by MUSB. To avoid this modification, the original kernel
function3

used to match endpoints has been rewritten. Nevertheless, there is a risk that
no corresponding endpoint can be found. To reduce the risk the MUSB
endpoints table (see listing 1.7) has been modified to be more generic.
If no endpoint is found, it will not be possible to emulate the USB
device.

 4.4 Driver Module

The driver module is responsible for the communication with USB devices
that will be plugged on the USBq board. Its task is to forward USB
communications to userland, and userland communications to the USB
peripheral.

 USB host controller registration

To handle USB devices, a Linux USB driver needs to register to the Linux
USB host controller. This registration is done by calling the kernel
usb_register function taking a usb_driver parameter, mainly composed of:

 	The name of the driver

 	A probe function: called when a new corresponding device is plugged
 on the board

 	A disconnect function: called when the device is disconnected

 	A usb_device_id table, used to determine what kind of devices can
 be handled by the driver

 The usb_device_id table defined by USBq driver, allows matching USB
devices by their characteristics such as:

 	Their ProductID/VendorID

 	Their USB class (HID, MassStorage...)

 	...

 It is also possible to match all USB devices choosing a non-zero value in
the driver_info attribute, which is what our driver does.

/* table of devices that work with this driver */
static struct usb_device_id driver_table [] = {
 { .driver_info = 64},
 {} /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, driver_table);

 Listing 1.8:
 Matching
 all
 USB
 devices

 Probe function

The probe function of the driver is called for every USB device interface
because an interface describes a device function such as audio or video.
Some devices can have several interfaces and therefore be handled by
several drivers. Our device module must handle all interfaces of all USB
devices.

 The probe function takes a parameter : the usb_interface structure that
it may handle. This structure contains all the information relative to
endpoints contained in this interface. When the function is called, the USB
host controller has already exchanged information (especially configuration
descriptor) with the USB device, to know which driver to load. It is up to the
driver to perform again this exchange.

 USB communication

At driver level, the USB communication is done with the URB (USB Request
Block) structure [17]. It has to be filled differently depending on the endpoint
nature (control, bulk, interrupt or isochronous) and direction (IN or OUT).
Sending is done with usb_submit_urb, and receiving is handled by a callback
specified in the URB structure.

 Driver specificity

Some limitations of the gadget part (see 4.3) have consequences on the driver
development. Indeed, because IN requests are not received by the gadget part, the
USBq driver needs to send them to the USB peripheral, in order to allow it to send
information4 .
The drawback of this approach is that USBq may query a device for data
when the host has not yet done so.

 When the driver detects that a new device is connected (its probe function
is called), it sends device features to userland with a NEW_DEVICE packet.
Whereas when it detects a device unplugged (its disconnect function is
called) it sends a RESET packet.

 4.5 Communication with userland

Every USB message coming from the device or from the host will first go
through its corresponding driver, then will be forwarded to the userland, then
will go through the other driver. Userland is then a mandatory crossing point
between the two parts of the USBq core.

 The communication mechanism between the kernel and userland programs
has been abstracted to be easily upgradable in the future. During the
development of USBq, userland programs have been developed outside
the BeagleBone black on a classical PC. A network communication
channel between USBq core and userland was implemented to simplify
testing.

 The USBq device driver is bound on an UDP port and waits for data. The
gadget driver component uses an UDP socket to send its messages coming
from the host to the userland.

 4.6 Limitations

The USBq core has several limitations. The first one is due to lack of time:
isochronous packets are not yet handled, preventing the use of many USB
devices such as webcams, or audio cards.

 As was previously mentioned, there are many constraints linked to MUSB
implementation choices.

 	Some requests are not forwarded to the GadgetAPI, and thus cannot
 be handled. If a device uses them, it will probably not work.

 	MUSB does not send IN requests for non control endpoints... so USBq
 has to generate them and can possibly do so with the wrong timing.
 Although no problems related to this issue were encountered yet, it is
 not entirely unlikely that this could impact certain USB devices.

 	MUSB has a predefined set of statically defined endpoints. Even if
 with the modifications made to MUSB (see 4.3) to make endpoint
 allocation more flexible, there subsists a risk that the requirements of
 some USB devices will not be met and prevent them from working.

 Finally, the design decision to handle USB communications in userland
and the associated overhead could interfere with the proper functioning of
devices that depend on tight timing constraints.

 5 USBq userland

While the core kernel module is written in C, the userland part used to solve
the problem can be written in any language. It was an objective of this project
to easily develop, adapt or change the logic part of USBq, without any needs
of module recompilation. The userland part is completely separate from the
core part.

 Usually the userland part will receive messages from one part of
USBq core, will process and forward them to the other part. However,
because there is no direct link between both parts, it is also possible to
communicate with only one of either the driver or gadget sides. In this
case, userland programs can completely emulate either a device or a
host.

 The userland part does not need to run on the same hardware as
the core (although that remains a possibility). It is then possible to
develop network based userland script, to implement network USB
devices.

 USBq API

The USBq userland component referred to as the USBq API provides a
unified framework to implement a proxy, device or host. It is a set of Python
classes used to:

 	Dissect, create and modify USB descriptors based on bespoke scapy
 classes [13]

 	Handle communication between userland scripts and the kernel core

 	Provide skeletons to implement hosts, devices and proxies

 Several userland programs (USBq APP) have been developed to fit general
needs, based on this API.

 5.1 Proxy

Proxy programs are USBq APP that make the link between the driver and the
gadget module, in other words between a USB device and a USB host. They
receive messages from one side and forward them to the other side. They
are used as MITM programs and can act on the communication to:

 	Forward it

 	Modify it

 	Store it

 	Block it

 	...

[image: PIC]

Fig. 9: Proxy Emulation

 All proxy programs have a common base allowing them to receive and send
data to and from the USBq core. Only a few hooks are necessary to interact
with USB messages.

def hookDevice(self,data):
 """ Called each time a device message is received """
 return data

def hookHost(self,data):
 """ Called each time a host message is received """
 return data

 Listing 1.9:
 Proxy
 API

 Because all proxies use a common communication interface with the USBq
core, they can be chained to provide several functionnalities.

[image: PIC]

Fig. 10: Chained Proxy

 Dissect

This program is used to inspect packets’ content and forward them without
any modification. The output can be configured to provide more or less
information:

 	Display management packets or not

 	Dissect USB descriptors

 	Display hexadecimal payload

 It is mainly used to understand or debug a USB communication, either
between a real USB device and host, or between an emulated device and a
host. The example 1.10 is the protocol dissection of a USB device using an
unknown protocol.

./dissect.py --server-ip beagle --dissect
< Ci0: GetDescriptor device [sz:18]
> Ci0: Device Descriptor vid:1130 pid:202 maxpkt:8 len:18
< Ci0: GetDescriptor configuration [sz:9]
> Ci0: Configuration Descriptor nintf:2
< Ci0: GetDescriptor configuration [sz:59]
> Ci0: Configuration Descriptor nintf:2
 Interface Descriptor ifnum:0 alt:0 class:hid nep:1
 HIDDescriptor
 Endpoint Descriptor EP1IN Interrupt int:1 pkt:8 len:7
 Interface Descriptor ifnum:1 alt:0 class:hid nep:1
 HIDDescriptor
 Endpoint Descriptor EP2IN Interrupt int:1 pkt:8 len:7
< Co0: SetConfiguration 1
< Ci0: GetDescriptor string [sz:255]
> Ci0: String Descriptor [Tenx Nonstandard Devic] len:46
< Co0: SetIDLE
< Ci0: GetDescriptor HID REPORT [sz:107]
> Ci0: HIDReportDescriptor
< Co0: SetIDLE
< Ci0: GetDescriptor HID REPORT [sz:87]
> Ci0: HIDReportDescriptor
< Co0: data: ’USBC\x00\x00\x04\x00’
< Co0: data: ’USBC\x00@\x02\x00’
< Co0: data: ’\x00\x00\x01\x00\x00\x00\x08\x08\x00\x00\x00\x00’
< Co0: data: ’USBC\x00\x00\x04\x00’
< Co0: data: ’USBC\x00@\x02\x00’

 Listing 1.10:
 Missile
 protocol
 dissection

 [image: PIC]

 FixLowSpeed

The BeagleBone black used is a high speed board. There are some problems
when a low speed device is forwarded through a high speed device,
because from a hardware point of view, the device is presented to the
host as a high speed device, but its descriptors describe a low speed
one.

 First the bInterval attribute of endpoint descriptors is used to specify the
polling interval of certain transfers. The units are expressed in frames, thus
this equates to either 1ms for low/full speed devices and 125μs for high speed
devices. This bad interpretation results in a very high latency for a mouse for
instance.

 Then the bMaxPacketSize attribute of device descriptor has to be 64 for a
high speed device, but in case of a low speed device forwarding this value
is equal to 8. This difference does not have any impact on a Linux
targeted host, but the device is simply not recognized on a Windows
one.

 The FixLowSpeed userland program fixes both values to be well
interpreted by the targeted host.

 The decision has been taken to not integrate this modification directly in
the core but rather in userland to have the choice to apply it or not. It could
be useful for example to detect if the targeted host is running Windows or
Linux for instance.

 Pcap writer

In usual situations, USB communications can be investigated with a VMware
virtual machine or the USBMon Linux kernel module [19]. But it implies that
we can modify the USB host, and this turns out to sometimes be impractical
or impossible.

 The pcap_writer program was developed to work around this problem. It
stores all packets forwarded from one part to another in a PCAP file, in order
to perform offline investigations.

 Because the core is running at driver and gadget level, above USB
controllers and hardware, USB acknowledgment messages do not reach the
driver layer and are either intercepted by the controller or by the hardware.
Even if those messages are not useful for the USB communication
understanding, they are needed by many analyzing tools such as wireshark.

Nevertheless, the content of those packets is predictable (acknowledgment
without data), therefore the pcap_writer program adds them to the pcap
file.

 USB Firewall

The purpose of this program is to restrict access to the USB host stack to only
authorized USB devices. The filtering is done on the first packet between
userland and core: the NEW_DEVICE packet. It contains the following
descriptors:

 	Device descriptor

 	Configuration descriptor

 	Interface descriptors

 	Endpoint descriptors

 This is sufficient for instance to only allow HID or MassStorage devices, or
to filter on the ProductID/VendorID. Because filtering is done on this
NEW_DEVICE packet and not on a forwarded real USB communication (because
USB transfer has not yet started), if information does not match an
authorized device, the protected host will not see any USB connection at
all.

 USBMutation

The purpose of this program is to apply random modifications on a forwarded
USB communication.

 In order to assess the robustness of a USB driver, it is possible to
implement a USB device emulation to attack it, which can be time consuming
because it is necessary to understand all USB exchanges. It is also possible
to forward the data between a real USB device and its driver and
make modification on the fly. Even if the former should lead to better
results, the latter has the advantage of being very easy to implement
and being driver independent. This latter method is implemented by
USBMutation.

 Keylogger

This program forwards keyboard communications to a host and logs all the
keystroke. This capture can then be replayed with the keyboard device script
described below. It interprets all the scancodes to determine the original input
text.

 This program is easy to understand for non technical people and is thus
useful for demonstration purposes.

 5.2 Device Emulator

The USBq design allows full userland device emulation, and its API allows
users to focus on their specific objective.

[image: PIC]

Fig. 11: Device Emulation

 Device emulators can either directly communicate with the USBq core
gadget, or through one or more proxy programs.

MassStorageInterface = Interface(descriptors=[Endpoint(1,BULK,IN,512),Endpoint(1,BULK,OUT,512)],cls=8,subcls=6,proto=80)

class EvilMassStorage(USBDevice):
 """ Triggers vulnerability in Windows 8.1, found by QB """
 @classmethod
 def create_arg_subparser(cls,parser):
 parser.add_argument("--vid","-v",metavar="ID",default=0x64,type=int,help="VendorID to set")

 def __init__(self,args):
 ident = DeviceIdentity.from_interface(MassStorageInterface)
 ident.device.idVendor = args.vid
 ident.interface[0].bNumEndpoint = 0
 super(EvilMassStorage,self).__init__(args,ident)

if __name__ == "__main__":
 parser = EvilMassStorage.create_arg_parser()
 args = parser.parse_args()

 mass = EvilMassStorage(args)
 mass.init()
 mass.run()

 Listing 1.11:
 Windows
 8.1
 Vulnerability

 The code presented in 1.11 triggers a vulnerability discovered by
QuarksLab [11] on Windows 8.1 with a few lines of code.

 Keyboard

This program acts as a keyboard and sends keystrokes to the host. It can act
interactively, where keypress are received from the standard input, or read the
keys from a file. This file can be manually created, or be the result of the
keylogger proxy program. It can then become a low cost USB rubber
ducky [12].

cat key.txt
{SUPER_RIGHT}1rcmd.exe
net user /add toto toto12
net localgroup administrators toto /add
keyboard.py --server-ip beagle -i key.txt

 Listing 1.12:
 Add
 windows
 user

 Fuzzer

USBq can simulate connections or disconnections of USB devices using
NEW_DEVICE and RESET management messages. The fuzzer program simulates
several devices that are connected one after another and sends invalid USB
descriptors in order to fuzz the host USB stack. It is similar to the fuzzer
implemented by umap [16].

 Fingerprint

Like the Fuzzer program, Fingerprint program simulates USB devices
connected one after another and analyses requests sent by the host to detect
which kind of host USB stack it is communicating with. It could be improved
to fully simulate devices instead of performing the enumeration process, and
make it possible to obtain a deeper view into the target. It could be used not
only to detect the target operating system but also target the driver
version.

 Pcap reader

This program reads a pcap file from a previous communication and replays it.
Replay is more complicated than only sending one packet after the other. The
steps involved are to determine USB descriptors of the device that
need to be replayed, then to connect to the host to respond to USB
descriptor solicitations (that does not necessarily happened in the
same order as the capture), and then to replay the data part of the
communication.

 It can be used for example to solve part of the 2015 SSTIC challenge (see
figure 12).

[image: PIC]

Fig. 12: SSTIC Challenge

 USBScan

The USBScan program is similar to the one developed in umap [16]. It emulates
several classes of USB devices (HID, mass storage, Ethernet card...) connected
one after another and tries to determine which ones can be handled by the
host. It is useful to estimate the host attack surface, and to understand which
USB drivers it embeds. For now, only mass storage and HID classes are
handled.

 5.3 Host emulator

Just like it is possible to emulate in device in userland, it is also possible to
the same for a host. In this configuration, a valid device is plugged into an
emulated host that will interact with it.

[image: PIC]

Fig. 13: Host Emulation

 Several concepts such as fuzzing or fingerprinting used in device emulation
can also be used in host emulation, but for now no USB host devices have
been developed.

 5.4 Way forward

USBq suffers from several limitations linked to devices that cannot be
forwarded through the USBq core. Improvement are therefore needed to
handle more USB devices, for example isochronous management.

 The communication between the USBq core and the userland could be
changed from UDP to netlink [10]. It would permit to have better
performance if the userland is running on the same board as the core, while
being flexible.

 In parallel, many userland scripts are currently in a proof of concept state,
and need to be improved to become robust enduser tools. For instance
USBScan handle only two different classes... it needs to be completed to get an
accurate overview of drivers managed by the host.

 5.5 Conclusion

The USBq project provides a modular design allowing the userland
implementation of devices, hosts or MITM USB programs. It is the result of a
growing need of skills in the USB domain.

 More than a toolbox it has to be seen as a flexible framework that can be
very easily adapted for future needs and problems, either for finding
vulnerabilities on USB host stacks and drivers, or for pentesting uncontrolled
host.

 References

 1. Beagle Bone Black.
 https://www.isee.biz/products/igep-_processor-_boards/igepv2-_dm3730.

 2. Facedancer. http://goodfet.sourceforge.net/hardware/facedancer21/.

 3. Facedancer Recon presentation. https://recon.cx/2012/schedule/attachments/57_recon2012-_goodspeedbratus.pdf.

 4. Fancedancer Hardware.
 http://goodfet.sourceforge.net/hardware/facedancer21/.

 5. Gadget API. https://www.kernel.org/doc/htmldocs/gadget/.

 6. GadgetFS. http://www.linux-_usb.org/gadget/.

 7. IGEPv2.
 https://www.isee.biz/products/igep-_processor-_boards/igepv2-_dm3730.

 8. libusb. http://www.libusb.org/.

 9. Moulinex Cookéo USB. http://cookeo.moulinex.fr/cookeo/cookeo-_usb.

10. Netlink Sockets. https://en.wikipedia.org/wiki/Netlink.

11. Quarkslab: From fuzzing to bug reporting.
 http://blog.quarkslab.com/usb-_fuzzing-_basics-_from-_fuzzing-_to-_bug-_reporting.html.

12. Rubber Ducky. http://hakshop.myshopify.com/products/usb-_rubber-_ducky-_deluxe?variant=353378649.

13. Scapy. http://www.secdev.org/projects/scapy/.

14. TTWE. https://www.usenix.org/system/files/conference/woot14/woot14-_vantonder.pdf.

15. TTWE Github. https://github.com/rvantonder/ttwe-_proto.

16. Umap. https://github.com/nccgroup/umap.

17. URB. https://www.kernel.org/doc/Documentation/usb/URB.txt.

18. USB On The Go. https://en.wikipedia.org/wiki/USB_On-_The-_Go.

19. USBMon. https://www.kernel.org/doc/Documentation/usb/usbmon.txt.

20. USBSniffer. http://beagleboard-_usbsniffer.blogspot.fr/.

21. Wikipedia USB. https://en.wikipedia.org/wiki/USB.

22. Jan Axelson. USB Complete fourth Edition: The developer’s guide. 2009.

 1 There is not device to device communication

 2 NEW_DEVICE packet

 3 usb_ep_autoconfig

 4 USB communication are driven by the host

_master-ebook5x.png
USBq Core i i

Hardware Hardware

USBg Board

_master-ebook6x.png
Userland

epl-»send_userland{msg epl->recy_userland(msg)

Kernel Module

epl->recy_usb(msg) epl->send_usbimsg)

Linux Kermel

Kernel land

epl IN msg epl IN msg

Hardware Hardware

_master-ebook3x.png
IN Request OUT Data
-— ——————

IN Data
—_—

OUT ACK
e

_master-ebook4x.png
Configuration Descriptar

Interface Descriptar

Lndpoint
Descriptar

Lnclpaint:
Descriptor

Cndpoint
Descriptor

Canfiguration Descriptor

Interface Descriptor

Lndpoint
Descriptar

Interface Descriptor
Endpoint

Descriplor

Lndpoint
Descriptar

_master-ebook1x.png
USBq
Userland

_master-ebook2x.png

_master-ebook0x.png

_master-ebook7x.png
USBqg
USERLAND

USBq
Gadget

Gadget API

MUSB

USB HW

_master-ebook9x.png
(=D

_master-ebook8x.png

cover.png

_master-ebook10x.png
Device USBqg
Script Gadget

missile.jpg

_master-ebook11x.png
USBg Host
Driver Script

final.png
J'umrs ovelr N\e ’ole-e.r c(oj'
Keyzwakezsé(x\

